• Title/Summary/Keyword: Lighting Density

Search Result 90, Processing Time 0.03 seconds

The High Density Sintering of Green-emitting β-SiAlON:Eu Ceramic Plate Phosphor (녹색발광 β-SiAlON:Eu 세라믹 플레이트 형광체의 치밀화 소결)

  • Park, Young-Jo;Lee, Sung-Hoon;Jang, Wook-Kyung;Yoon, Chang-Bun;Yoon, Chul-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.503-508
    • /
    • 2010
  • $Eu^{2+}$-doped $\beta$-SiAlONs ($Si_{6-z}Al_zO_zN_{8-z}:Eu_y$) are recognized as promising phosphor materials to build an white LED for lighting application due to its excellent absorption/emission efficiency in the long wave length region. In this research, the fabrication of $\beta$-SiAlON:Eu plate phosphor by sintering was investigated with fixed Eu content(y) and varied composition of the host lattice(z). The addition of the activator $Eu_2O_3$ lead to enhanced densification by forming the transient liquid phase. The refinement of a composition by the calculated lattice parameter indicated that the measured composition of the fabricated specimens is nearly same to that of designed one. The single phase $\beta$-SiAlON:Eu plate with relative density of 96.4% was achieved by addition of 2 wt% CaO, which implies the possibility of full densification by adjusting the processing variables.

Effect of Light/dark Cycles on Wastewater Treatments by Microalgae

  • Lee, Kwangyong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.194-199
    • /
    • 2001
  • Chlorella kessleri cultivated in artificial wastewater using diurnal illumination of 12h light/12h dark (L/D) cycles. The inoculum density was 10(sup)5 cells/mL and the irradiance in light cycle was 45$\mu$mol㎡s(sup)-1 at the culture surface. As a control culture, another set of flasks was cultivated under continuous illumination. Regardless of the illumination scheme, the total organic carbon (TOC) and chemical oxygen demand (COD) was reduced below 20% of the initial concentration within a day. However, cell concentration under the L/D lighting scheme was lower tan that under the continuous illuminating scheme. Thus the specific removal rate of organic carbon under L/D cycles was higher than that under continuous illumination. This result suggested that C. kessleri grew chemoorganotrophically in the dark periods. After 3 days, nitrate was reduced to 136.5 and 154.1mg NO$_3$-N/L from 168.1mg NO$_3$-N/L under continuous illumination and under diurnal cycles, respectively. These results indicate nitrate removal efficiency under continuous light was better than that under diurnal cycles. High-density algal cultures using optimized photobioreactors with diurnal cycles will save energy and improve organic carbon sources removal.

  • PDF

Accurate electronic structures for Ce doped SiAlON using a semilocal exchange-correlation potential

  • Yu, Dong-Su;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.438-438
    • /
    • 2011
  • White light-emitting diodes (LEDs), the so-called next-generation solid-state lighting, offer benefits in terms of reliability, energy-saving, maintenance, safety, lead-free, and eco-friendly. Recently, rare-earth-doped oxynitride or nitride compounds have attracted a great deal of interest as a photoluminescent material because of their unique luminescent property, especially for white LEDs applications. Ce doped ${\beta}$-SiAlON has been studied as a wavelength conversion phosphor in white LEDs thanks to its high absorption rates, high quantum efficiency, and excellent thermal stability. Previously researches were not enough to understand the detail mechanism and characteristics of ${\beta}$-SiALON. The bandgap structures and electronic structures were not exact due to limitation of calculation methods. In this study, to elucidate the Ce doping effect on the SiAlON system, accurate band structures and electronic structure of the Ce doped ${\beta}$-SiAlON was intensively investigated using density functional theory calculations. In order to get a better description of the band gaps, MBJLDA method were used. We have found a single Ce atom site in ${\beta}$-SiAlON super cell. Furthermore, the density of state, band structure and lattice constant were intensively investigated.

  • PDF

A Study on the Various Light Source Radiation Conditions and use of LED Illumination for Plant Factory (식물공장 각종광원의 방사조건과 LED조명의 활용에 관한 연구)

  • Yoon, Cheol-Gu;Choi, Hong-Kyoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.14-22
    • /
    • 2011
  • The artificial lights to be introduced for the plant factories is requiring the artificial light resources with minimizing the energy consumption to reduce the greenhouse gases which is a major cause of global warming, and maximizing the efficiency in photosynthesis effect light-wave range, in which the plants can be greatly grown and developed, and having the signal light-wave range for forming the light types. the best growing and developing environment for the plants has recently realized with utilizing the LED(Lighting Emitting Diode) lamps, as a environment-friendly green lamps, which can elevating the light efficiency with using only the specific light wave range. In this study, to provide the necessary lights for the full artificial light type of the plant factory, the following research/study and experiments has been conducting. experiments of the spectrum for each light sources, and LED, The intensity of illumination, Irradiance, Photosynthesis Photon Flux Density.

Emission characteristic along a magnetic flux density change of Antenna for Electrodeless Fluorescent Lamp (무전극 형광램프용 안테나의 자속밀도 변화에 따른 발광 특성)

  • Her, In-Sung;Kim, Nam-Gun;Choi, Yong-Sung;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.644-647
    • /
    • 2004
  • Recently, the environmental problem has received considerable attention. so, many lamps have been developing for environmental requirement and energy efficiency, also, at glow discharge lamp researchers try to reduce energy spending that is power saving lamp. this kind requirement agree with strong points of electrodeless fluorescent lamp has received to now lighting sauce. In this paper, at the research and development of Electrodeless Fluorescent Lamp phase, according to ferrite C.F.D(Computational Fluid Dynamics) Simulation and lamp brightness character are measured to find optimization design requirements of RF antenna which is impotent for emission of lamp.

  • PDF

Electromagnetic Field Distribution of Electrodeless Fluorescent Lamps (무전극 형광램프의 페라이트 특성변화에 따른 전자계 분포)

  • 김광수;이영환;조주웅;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.79-82
    • /
    • 2004
  • The RF inductive discharge or inductively coupled plasma (ICP) continues to attract growing attention as an effective plasma source in many industrial applications, the best known of which are plasma processing and lighting technicology. Although most practical ICP operate at 13.56 [MHz]and 2.65 [MHz], the trend to reduce the operating frequency is clearly recognizable from recent ICP developments. In an electrodeless fluorescent lamp, the use of a lower operating frequency simplifies and reduces cost of rf matching systems and rf generators and can eliminate capacitive coupling between the inductor coil and plasma, which could be a strong factor in wall erosion and plasma contamination. In this study, the configuration of ferrite and fixture which operates at the frequency of 2.65[MHz]was discussed as functions of the ferrite thickness and distance by using the electromagnetic simulation software (Maxwell 2D).

A Study on Energy Requirement Variation According to Energy Efficiency Rating Evaluation and Design Variable of Standard Design of Rural Houses (농촌주택표준설계도 에너지효율등급평가 및 설계변수에 따른 에너지소요량 변화에 관한 연구)

  • Park, Mi-Lan;Ryoo, Yeon-Su;Choi, Jeong-Man;Seo, Hye-Won
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.19 no.2
    • /
    • pp.9-16
    • /
    • 2017
  • The study analyzed the heat losses and the building energy efficiency grade by the energy simulation using the ENERGY# and ECO2 programs for the three types of Standard design of rural houses. It was calculated the energy efficiency rating by the ECO2 program for the rural housing standard design, and the energy demand and the energy consumption by each factor were compared and analyzed. And it analyzed energy consumption by element of each house by ENERGY # program. As a result, first in the evaluation of the energy efficiency grade of buildings by the ECO2 program, the rating for primary energy requirement for the housing newly built by the standard design of rural house is expected to range from 2 to 4 with 189.3 to $238.7kWh/m^2.a$. Second, the energy loss of each part of standard design of rural housing occurs in the order of ventilation 39%, window 33%, outer wall 14%, roof 9%, bottom 5%, and energy loss through ventilation and window occurs more than 70%. Third, the most beneficial effects on the energy efficiency grade is obtained the lowest grade of all three types by 2 when the lowering of the window and door heat transmission rate and the lowering of the light density, and the heat exchange ventilation device is not installed. Fourth, in the standard design of rural housing, the energy demand is occupied by heating > hot water > lighting order, and the order of the weight is changed in order of heating > lighting > ventilation > hot water. Fifth, building energy efficiency assessment system needs to establish policy for fixing rural housing energy as a practical device to ensure energy performance and quality.

Comparative Analysis of Thermal Dissipation Properties to Heat Sink of Thermal Conductive Polymer and Aluminum Material (열전도성 고분자와 Al재질의 Heat Sink 방열 성능 비교 분석)

  • Choi, Doo-Ho;Choi, Won-Ho;Jo, Ju-Ung;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.137-141
    • /
    • 2015
  • The purpose of this study is examining thermal dissipation materials for the lighting and radiate efficiency improvement of 8W LED and confirming the properness of the thermal dissipation materials for LED heat sink. Solid Works flow simulation on 8W class COB was done based on the material characteristics of thermal conductive polymer materials. According to the result of simulation, Al had better thermal dissipation performance than PET. Highest temperature was $7.6^{\circ}C$ higher while lowest temperature was $7.8^{\circ}C$ lower. The test on the heat sinks made by the materials, highest temperature was $4.1^{\circ}C$ higher and lowest temperature was $3.9^{\circ}C$ lower. It is possible to confirm that Al heat sink has better thermal dissipation efficiency because it has better dispersion of heat generated at junction temperature and less heat cohesion. The weight of PET heat sink was reduced than Al heat sink by 46.9% by the density difference between Al and PET. In conclusion, thermal dissipation performance of thermal conductive polymer is lower than Al material however, it is possible to lighting heat sink because thermal conductive polymer has better formability, has lower specific weight and enables various design options.

Effect of Seedling Quality and Growth after Transplanting of Korean Melon Nursed under LED light Sources and Intensity (LED 광원과 광도에 따른 참외의 묘소질 및 정식 후 생육 변화)

  • Lee, Ji Eun;Shin, Yong Seub;Do, Han Woo;Cheung, Jong Do;Kang, Young Hwa
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.294-301
    • /
    • 2016
  • This study was conducted to analyze the seedling quality of korean melon and the growth after transplanting of korean melon nursed under the LED sources. LED sources were RB7 (Red:Blue=14:2), RB3 (Red:Blue=12:4) and Blue(B=16). Photosynthetic photon flux density(PPFD) was 50, 100 and $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The lighting treatment was started after graft-taken and was applied for 20 days at 4 hours(05:30 and 07:30, 17:30 and 19:30) per day. Plant height and stem diameter of scion were longer and thicker under a high ratio of blue light condition. Dry matter ratio and compactness were highest in RB3 compared to the other LED sources treatments. $CO_2$ exchange rate increased $5.44{\mu}molCO_2{\cdot}m^{-2}{\cdot}s^{-1}$ under RB7 $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and dropped to negative values under control. PPFD $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of RB3 resulted in the longest plant height by 132.3cm and flowering ratio also was the highest by 75%.

Enhanced Electrical Properties of Light-emitting Electrochemical Cells Based on PEDOT:PSS incorporated Ruthenium(II) Complex as a Light-emitting layer

  • Gang, Yong-Su;Park, Seong-Hui;Lee, Hye-Hyeon;Jo, Yeong-Ran;Hwang, Jong-Won;Choe, Yeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.139-139
    • /
    • 2010
  • Ionic Transition Metal Complex based (iTMC) Light-emitting electrochemical cells (LEECs) have been drawn attention for cheap and easy-to-fabricate light-emitting device. LEEC is one of the promising candidate for next generation display and solid-state lighting applications which can cover the defects of current commercial OLEDs like complicated fabrication process and strong work-function dependent sturucture. We have investigated the performance characteristics of LEECs based on poly (3, 4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)-incorporated transition metal complex, which is tris(2, 2'-bipyridyl)ruthenium(II) hexafluorophosphate in this study. There are advantages using conductive polymer-incorporated luminous layer to prevent light disturbance and absorbance while light-emitting process between light-emitting layer and transparent electrode like ITO. The devices were fabricated as sandwiched structure and light-emitting layer was deposited approximately 40nm thickness by spin coating and aluminum electrode was deposited using thermal evaporation process under the vacuum condition (10-3Pa). Current density and light intensity were measured using optical spectrometer, and surface morphology changes of the luminous layer were observed using XRD and AFM varying contents of PEDOT:PSS in the Ruthenium(II) complex solution. To observe enhanced ionic conductivity of PEDOT:PSS and luminous layer, space-charge-limited-currents model was introduced and it showed that the performances and stability of LEECs were improved. Main discussions are the followings. First, relationship between film thickness and performance characteristics of device was considered. Secondly, light-emitting behavior when PEDOT:PSS layer on the ITO, as a buffer, was introduced to iTMC LEECs. Finally, electrical properties including carrier mobility, current density-voltage, light intensity-voltage, response time and turn-on voltages were investigated.

  • PDF