• Title/Summary/Keyword: Light-weight material

Search Result 586, Processing Time 0.034 seconds

Characteristic of Insulation with Moisture Content Light-weight Inorganic Foam Ceramic Board (경량무기발포 세라믹보드 및 무기단열재의 함수율에 따른 단열특성)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.198-199
    • /
    • 2013
  • To prevent energy waste in buildings used heat insulator. Heat insulator materials can be classified inorganic and organic. The inorganic material has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. Technologies on energy saving and materials used in curtain walls have progressed with increase of high-rise and large buildings. However, there is little study to explain water resistance performance of the curtain walls. This study focused on evaluation of insulation of inorganic materials and performance evaluation by thermal conductivity.

  • PDF

Modeling and Motion-control for a Light-weight Delta Robot (경량 델타로봇의 모델링 및 모션 제어)

  • Kim, Seong-Il;Hong, Jun-Ho;Shin, Dongwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.155-162
    • /
    • 2018
  • Delta robots are usually used for industrial manufacturing, but heavy weight and expensive price have been obstacles to rapid propagation of robots in the field. The goal of this research is to make light-weight and price-competitive delta robots. To reduce the weight, we used plastic material for the arm link, and to reduce the price, we used a step-motor as the main actuator. First we formulated the equations of inverse kinematics for the designed delta robot and then verified these equations by using multibody-dynamics simulation. An algorithm of motion control was developed and applied to the motion-processing unit using a timer-interrupt of 8 milliseconds. Finally, we tested the performance of the new delta robot by checking its control of motion along line segments.

Synthesis and Characterization of Carbazole Derivate for Blue light Emitting Material (카바졸을 포함하는 청색 OLED 재료의 합성)

  • Shin, Min-Gi;Park, Hyun-Tea;Jang, Sang-Hun;Koh, Hye-Jin;Jang, Jae-Wan;Kim, Yun-Hi;Kwon, Soon-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.58-58
    • /
    • 2010
  • We designed and synthesized DFPCE blue emitting materials by Mc Murry coupling reaction in order to improve the device efficiency and stability. The structure was confirmed by $^1H$-NMR. The physical properties were characterized by differential scanning calorimetry, thermogravimetric analysis, UV-vis, photoluminescence spectrum and cyclic voltammetry. The decomposition temperature of the material, which correspond to a 5% weight loss upon heating, is $513.58^{\circ}C$. The photoluminescence (PL) spectrum of DFPCE exhibited blue emission at 425 nm in chloroform solution and 462 nm in film.

  • PDF

A Study on the Optimum Design of a Motor Shaft in Electric Vehicle Using HEEDS (HEEDS를 이용한 전기자동차에서의 모터 축 최적설계에 관한 연구)

  • Kim, Bong-Hwan;Jeong, Young-Jae;Lee, Chang-Ryeol;Lee, Byung-Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.751-756
    • /
    • 2018
  • A study on the weight reduction of a motor shaft in electric vehicle by using optimum design technique was carried out. The structural analysis of a motor shaft was performed by using ANSYS to investigate the structural safety. We also used HEEDS to find the optimal hollow shaft thickness. When the material of the hollow shaft is changed to SCM822H by using ANSYS 14.5 and HEEDS MDO, the weight could be reduced by about 53 % compared to the conventional solid one. From this study, the optimized dimensions of a hollow shaft were determined for light weight design.

An Optimal Design for Truss Core Unit of Railway Carbody of Aluminum Extrusion Plate (알루미늄 압출재를 사용한 철도차량차체의 단위 압출재 최적설계)

  • 장창두;하윤석;조영천;신광복
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.194-202
    • /
    • 2003
  • To make railway carbody light in weight has advantages at some aspects of both manufacturing and maintenance. Recently, railway carbodys of steel structure have been lightened their weight by using aluminum extrusion plate. for the additional lightening of railway carbody, an optimal design which maintains proper strength and minimizes weight must be achieved. Optimization which is used with finite element analysis for aluminum extrusion plate has the disadvantage of consuming much time. In this paper, the method of equivalent material property which is available to FEA code is established using the method of equivalent stiffness. This method for plate is expanded into the method for railway carbody structure with plates and shells. An objective function is established for maximum stiffness of unit aluminum extrusion plate using established method of equivalent material property. We performed an multi-objective optimization using the penalty function method. As a result, recommendable shapes and sizes of unit extrusion plate for under-frame of high speed train is presented.

A Study on the Durability Complement of Lightweight Photovoltaic Module (경량화 태양광 모듈의 내구성 보완에 관한 연구)

  • Jeong, Taewung;Park, Min-Joon;Kim, Hanjun;Song, Jinho;Moon, Daehan;Hong, Kuen Kee;Jeong, Chaehwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.110-114
    • /
    • 2021
  • In this study, we fabricated light-weight solar module for various applications such as building integrated photovoltaics (BIPV), vehicles, trains, etc. Ethylene tetra fluoro ethylene (ETFE) film was applied as a material to replace the cover glass, which occupies more than 65% of the weight of the PV module. Glass fiber reinforced plastic (GRP) was applied to the ones with a low durability by replacing the cover glass to ETFE. Moreover, to achieve a high solar power conversion in this study, we applied a shingled design to weight reduced solar modules. The shingled module with GRP shows 183.7 W of solar-to-power conversion, and the output reduction rate after weight load test was 1.14%.

Compaction and Leaching Characteristics of the Light Weight Soil Used Recycled Styrofoam Beads and Disposal soils (폐 Styrofoam 혼합토의 다짐 및 용출 특성)

  • Shin, Bang-Woong;Lee, Bong-Jik;Lee, Jong-Kyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 2002
  • This paper presents the engineering property of light weight soil made of soil mixed with recycled Styrofoam and stabilizer. Recycled Styrofoam is widely used for lightweight fill material because it has important geotechnical characteristics which are light, adiabatic, and effective for vibration interception. It is very easy to get the disposal styrofoam. For this study, dynamic compaction test, static compaction test and pH and leaching tests were performed. Based on the test results, it is concluded that the static compaction method is recommened to prevent from crushing materials and pH values of embankment materials are satisfied with these of domestic and RCRA configuration.

  • PDF

Development Of A Pole On The Distribution Line System (배전용 FRP 전주의 제조 기술 개발)

  • 이웅선;한만준;조한구;박기호;송일근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.402-404
    • /
    • 2000
  • The FRP pole had great advantages over other material poles. Light weight, easy installing and transporting were good characteristics. The material's superior properties represented the good durability for sea weather and air pollution, good insulation for electric, and changeable colors. In those properties, usages were like a area affected by sea, downtown, the area among the mountains and a special area for the outstanding views. It was studied that pole manufacturing method, structure analysis of pole by FEM in this study. Filament winding method was selected for a new pole manufacturing method. It produced the tapered poles and mechanically strong properties.

  • PDF

Standardization of Impact Test Methods of Non-bearing Lightweight Wall for Building (건축용 비내력 경량벽체의 내충격성 시험방법의 표준화)

  • Kim, Ki-Jun;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.181-182
    • /
    • 2015
  • The use of non-bearing light weight wall has increased recently due to the increase of high-rise buildings and supply of long-life housing. Light weight wall has advantages such as reducing the self-weight of the building, convenience in installation, and shortening construction period, however, must have a sufficient strength to external force. This study standardized the impact resistance test method for light weight walls by using the actual impact load obtained through load analysis test in previous studies. The impact resistance test method was divided into the test method that uses soft body and the one that uses hard body. The size of specimen was set up as height 2.4m and width 3.0m. The size and shape of the body followed those used in BS 5234-2 and so on for the compatibility with the test method used overseas. The judgment criteria for impact resistance based on test results were not defined uniformly as the assessment of functional damage can vary depending on the type of material, structural method, purpose of wall, and so on even when the same impact load was applied.

  • PDF