• Title/Summary/Keyword: Light-weight alloy

Search Result 130, Processing Time 0.025 seconds

A Study on the Mechanical Characteristic in Al 6061 Alloys welded by Friction Stir Welding (Al 6061 합금의 마찰교반접합시 접합부의 역학적 특성에 관한 연구)

  • 방한서;김흥주;고민성;장웅성
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.105-108
    • /
    • 2002
  • Al-alloy is utilized widely as a light-weight material to an automobile, a vessel and many kind of equipment, due to the light-weight and its characteristics that is a good tensile strength, elongation and tenacity for bearing heavy load and weight. Al-alloy has the good property of hot working, cold working and corrosion-resistant. But the exiting fusion welding by using Al has some economical and technical problems, but on the other hand, Friction Stir Welding (FSW) that is new joining method can settle the disadvantages that occur to the fusion welding and Is being applied and extended into the various industry fields. On this study, To analyze accurately the mechanical properties of joining area by FSW in Al 6061 alloy by using finite analysis program with finite element method. The size of HAZ and the thermal distribution is simulated and the mechanical properties around the FSW joining area to the Al-alloy 6061 is examined.

Evaluation of Fatigue Endurance for an Ultra-light-weight Inline Skate Frame (초경량 인라인 스케이트 프레임의 피로 내구성 평가)

  • Lee, Se-Yong;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.1-5
    • /
    • 2011
  • In order to evaluate fatigue endurance for an ultra-light weight inline skate frame, FEM analysis was performed. Tensile properties and a S-N curve were determined through tensile and fatigue tests on a modified Al-7075+$S_c$ alloy. The yield and ultimate tensile strengths were 553.3 MPa and 705.5 MPa, respectively. The fatigue endurance limit of this alloy was 201.2 MPa. For evaluating the fatigue endurance of the inline skate frame, the S-N data were compared with the stress analysis results through FEM analysis of the frame. The maximum Von-Mises stress of the frame was determined 106 MPa through FEM analysis of the frame, assuming that the rider weight is 75 Kg. Conclusively, on the basis of fatigue limit, the inline skate frame has a safety factor of approximately 2.0.

A Characteristics of Bending Deformation in HallowRectangular Tube by Press Die (중공 각재의 프레스 굽힘 변형 특성)

  • Lee, H.Y.;Kim, K.S.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.285-288
    • /
    • 2007
  • In the recent years the using of low-density material such as high-strength Al alloy on the various industries is becoming light-weight. High strength and hollow Al alloy is good material for stiffness and recycling. Therefore the advanced manufacturing technology with Al alloy is continuously required in many industrial fields. In this study simplified hallow rectangular section of Al alloy is analyzed by FE analysis. Bending stress is affected punching and rotating of wing-die. The analysis of press bending is preformed at first. The elastic recovery value of component and stress distribution acting from the result of the bending angle of three types were obtained. The designed precesses were analyzed by the commercial FE code, Deform-3D. Forming dies for each process were designed and prototypes were manufactured by the verified forming process. Some of the important features of design parameters in the press bending were reviewed.

  • PDF

Study on Residual Velocity of Steel Sphere Perforating Light Weight Thin Plate (경량 박판을 관통하는 강구의 잔류속도 연구)

  • Song, Min-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.101-110
    • /
    • 2005
  • In this paper, the experiments have been conducted to measure the residual velocity for 3.5g steel ball perforating light weight metal plates of aluminum alloy and magnesium alloy. Non-contact electro-magnetic sensors were used to measure the velocity of steel ball before/after perforating plates. The thicknesses of specimens used were about 2.8mm and 4.8mm. The impact velocities of steel ball were from 662m/s to 3594m/s. With same conditions, numerical analysis using Autodyn 2D has been conducted. The results of numerical analysis corresponded with those of experiments. Also, It is suggested that the difference between the residual velocity of experiment or numerical analysis and that of THOR experimental equation of BRL grew smaller as the impact velocity were increased.

Preparation of corrosion-resistive thin films by ion plating method and their corrosion protection mechanism (이온 플레이팅법에 의한 내식 박막의 제작과 부식방식 메카니즘)

  • Lee, K.H.;Bae, I.Y.;Kim, K.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.285-286
    • /
    • 2006
  • Magnesium is the lightest of all the structural metals having density of 1.74. It is approximately 2/3 lighter than aluminium, l/4 lighter than titanium alloy and 1/5 lighter than iron. Among the light-weight alloys, magnesium and its alloys show a good possibility for high performance aerospace and automotive applications, however the widespread use of magnesium alloys has been limited mainly by its poor oxidation and corrosion resistance. In this work, corrosion-resistive thin films were prepared onto the magnesium alloy substrate(AZ91D) by environmental friendly coating technique, ion plating method. And their corrosion protection mechanism were analyzed.

  • PDF

Texture Evolution of Extruded AZ80 Mg Alloy under Various Compressive Forming Conditions (AZ80 마그네슘 합금 압출재의 압축 성형조건에 따른 방위특성 분석)

  • Yoon, J.H.;Lee, S.I.;Lee, J.H.;Park, S.H.;Cho, J.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.240-245
    • /
    • 2012
  • With the increasing demand for light-weight materials to reduce fuel consumption, the automobile industry has extensively studied magnesium alloys which are light weight metals. The intrinsic poor formability and poor ductility at ambient temperature due to the hexagonal close-packed (HCP) crystal structure and the associated insufficient number of independent slip systems restricts the practical usage of these alloys. Hot working of magnesium alloys using a forging or extrusion enables net-shape manufacturing with enhanced formability and ductility since there are several operative non-basal slip systems in addition to basal slip plane, which increases the workability. In this research, the thermomechanical properties of AZ80 Mg alloy were obtained by compression testing at the various temperatures and strain rates. Optical microscopy and EBSD were used to study the microstructural behavior such as misorientation distribution and dynamic recrystallization. The results were correlated to the hardening and the softening of the alloy. The experimental data in conjunction with a physical explanation provide the optimal conditions for net-shape forging under hot or warm temperatures through control of the grain refinement and the working conditions.

Light-Weight Linear Induction Motor for Light Railway Train (경량전철 추진시스템용 Linear Induction Motor의 경량화)

  • Kim, K.C.;Lee, K.J.;Lee, J.I.;Park, J.T.;Kwon, J.L.;Kim, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.40-42
    • /
    • 1999
  • In this paper, light-weight system of linear induction motor(LIM) for light railway train is presented, and is compared with former type of LIM. For the light-weight system without modification of motor size the material of primary core(silicon steel) is changed with iron-cobalt alloy and the material of primary winding(copper) is changed with aluminium. The characteristics of LIM are analyzed. Specially, the air gap magnetic flux density distribution due to end effect is showed with motor velocity, we will present papers continuously through designing and testing a trial product.

  • PDF

Design and Manufacture of CFRP Pipe for Bicycle Frame (자전거 프레임용 CFRP 파이프 설계제작)

  • 이범성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.130-137
    • /
    • 2003
  • The pipe of CFRP for bicycle frame is designed and made for light weight of bicycle and then its suitability to bicycle frame is verified by comparing the other material i.e. steel, Cr-Mo steel, Al alloy pipe for bicycle frame. The pipe of CFRP is laminated to [0/$\pm$45]$_T$ and made by tape winding method and then its degree of light weight is evaluated by comparing the other pipes which is made by steel etc.

Durability and Stress Analysis On Automotive Lower Arm (자동차 로우어 암의 내구성 및 응력 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.376-380
    • /
    • 2010
  • The capability of automotive suspension system depends on steering safety of knuckle and lower control arm. In this study, light weight is applied with lower arm by the material of aluminium alloy. Distributed stress, fatigue life and proper vibration are analyzed with multiple loads happened by automobile. The durability of lower arm can be verified by the result of structural analysis.

Development of Forged Piston for Weight-Reduction (경량 단조 피스톤 기술 개발)

  • Hong, Eunji;Kang, Heesam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.111-115
    • /
    • 2017
  • This forged piston is proposed with a lighter weight and higher durability than a gravity casting piston for gasoline engines. However, a forged piston is very difficult to develop and mass-produce due to lack of basic technologies such as design, material and forging technique. First, we benchmarked existing forged pistons according to database design parameters. Second, we evaluated two solidification processes, continuous casting and spray forming, to produce heat-resistant alloy billets for forging. The spray forming process gives better mechanical properties at all temperatures, particularly at elevated temperatures except when poor formability is present. We used DEFORM simulation to determine the optimum process condition with billet from spray forming and successfully commercialized it with LF Sonata HEV.