• 제목/요약/키워드: Light-weight aggregate

검색결과 97건 처리시간 0.025초

수직로에서 부유 소성된 경량 세골재의 특성 (Characterization of fine lightweight aggregates sintered at floating state using by vertical furnace)

  • 강승구
    • 한국결정성장학회지
    • /
    • 제18권6호
    • /
    • pp.258-263
    • /
    • 2008
  • 입자를 부유 상태에서 소성할 수 있는 수직로를 이용하여 2 mm 이하 크기의 경량 세골재를 제조하고 그 물리적 특성을 고찰하였다. $1200{\sim}1300^{\circ}C$에서 소성된 대부분 시편은 표면에 다량의 액상이 발달하였고 따라서 내부의 가스가 팽창하여 다공성의 중앙부와 상대적으로 치밀한 표피층이 형성되었다. 특히 압출 성형체를 파쇄시켜 얻은 부정형의 C 계열 시편은 $1300^{\circ}C$ 이상으로 소결하면 내부에 가스가 팽창하여 시편 전체가 부풀어져서 구형으로 되었다. 본 부유 수직로에서 소성된 시편의 겉보기 비중은 $0.68{\sim}1.08$ 범위로 대부분 물에 뜰 정도의 경량이었다. 제조된 경량 세골재의 흡수율은 기공율과 비례하였고, 따라서 내부 기공들이 완전 고립된 폐쇄기공은 아님을 나타내었다. 부유소성로에서 제조된 세골재는 전기 머플로에서 소성된 시편과 비슷한 물성을 나타내었으나, 전기로에서 나타나는 골재 간 융착 현상이 발생하지 않았다. 수직로에서 부유소성된 세골재의 내충격성은 자연골재보다 다소 낮았으나, 단위용적중량은 KS 규격 기준을 만족하였다.

동상모형실험을 통한 아스팔트 포장체의 동결 및 처짐 특성 (Freezing and Deflection Characteristics of Flexible Pavement Structure Using Frost Model Test)

  • 신은철;황순갑;박정준
    • 한국지반신소재학회논문집
    • /
    • 제11권3호
    • /
    • pp.27-35
    • /
    • 2012
  • 본 논문에서는 $-20^{\circ}C{\sim}10^{\circ}C$의 온도 유지가 가능한 길이 3.2m, 폭 3.2m, 높이 2.4m의 대형 냉동고 내부에 길이 0.9m, 폭 0.9m, 높이 0.9m의 실험용 토조를 실제 도로 아스팔트 포장체의 형상과 유사하게 구성하여 실험 조건에 따른 시료 깊이별 온도변화, 동상 팽창압, 팽창량 등 도로의 동결 특성을 분석하였다. 또한, 소형충격재하 장치(LFWD)를 활용하여 동결 전과 융해 후 도로포장구조체의 동상방지층 유무에 따른 실험을 실시하여 아스팔트 포장체 표면의 처짐을 측정하였다. 즉, 도로포장 중앙부의 처짐비와 표층곡률지수비를 분석, 평가함으로써 도로동상방지층의 효용성 및 공용성을 규명하였다.

연산호 육성용 어초 개발을 위한 송이 다공성 콘크리트의 적용성에 관한 실험적 연구 (An Experimental Study on the Application of Porous Scoria Concrete to Artificial Reefs for Soft Coral)

  • 홍종현;김문훈;김석철;박성배;류성필
    • 한국해양공학회지
    • /
    • 제19권4호
    • /
    • pp.28-34
    • /
    • 2005
  • In the study application of volcanic scoria concrete to artificial reefs is investigated. Volcanic scoria is a natural volcanic product that shows light weight, mil/i-porous, and far-infrared irradiation characteristics. The properties of volcanic scoria concrete using Jeju scoria aggregate are evaluated by conducting a comprehensive series of tests on strength and void ratio. It is concluded that the volcanic scoria concrete has the sufficient strength of 4MPa-13MPa and adequate void ratio of $12\%-35\%$ to be accepted as artificial reef concrete. The field experiments are performed through observation by scuba diver's at the Seogwipo coast. Porous specimen and plane concrete specimen are prepared for comparison purposes. Seasonal changes of soft coral on the two series of test specimens were have been observed from Apr. 9, 2004 to Mar. 18, 2005. The soft coral is well grown on the porous specimen however there are no significant changes on the conventional plain concrete specimen. Thus it is concluded that the volcanic scoria concrete is highly suitable as artificial reef concrete.

Roll-to-roll 적용 가능한 마이크로 응집 구조를 갖는 EVA/SiO2 복합 필름의 산란 특성 (The Scattering Property of EVA/SiO2 Composite Film Formed Micro-aggregation Structure for Roll-to-roll Process)

  • 조국현;양준영;이시우;박은경;최근석;송기원;김효정
    • 한국염색가공학회지
    • /
    • 제30권3호
    • /
    • pp.190-198
    • /
    • 2018
  • We fabricated high transmission and high scattering poly(ethylene-co-vinyl acetate)(EVA) films embedding $SiO_2$ nanoparticles to improve outcoupling efficiency in organic display. The 800nm diameter $SiO_2$ nanoparticles aggregated and formed $1.56{\mu}m$ (with ${\pm}0.853{\mu}m$ standard deviation) diameter microparticles in EVA. The total transmission of scattering film was 83.3% on Polyethylene terephthalate(PET), which was higher than reference 82.8% PET substrate. The diffuse transmission and haze of the $SiO_2$ embedded EVA film were 76.1% and 91.4%, respectively. The optimized condition was 1:1 weight ratio of $SiO_2$ nanoparticles to EVA in Tetrahydrofuran(THF) solution. When the ratio of $SiO_2$ was larger than 1, the total transmission decreased by the increase in backscattering of light due to high scattering. With the optimized condition, we could succeed to fabricate a large scale film(35m in length) with a roll-to-roll process.

Evaluation of dynamic properties of extra light weight concrete sandwich beams reinforced with CFRP

  • Naghipour, M.;Mehrzadi, M.
    • Steel and Composite Structures
    • /
    • 제7권6호
    • /
    • pp.457-468
    • /
    • 2007
  • Analytical and experimental investigation on dynamic properties of extra lightweight concrete sandwich beams reinforced with various lay ups of carbon reinforced epoxy polymer composites (CFRP) are discussed. The lightweight concrete used in the core of the sandwich beams was made up of extra lightweight aggregate, Lica. The density of concrete was half of that of the ordinary concrete and its compressive strength was about $100Kg/cm^2$. Two extra lightweight unreinforced (control) beams and six extra lightweight sandwich beams with various lay ups of CFRP were clamped in one end and tested under an impact load. The dimension of the beams without considering any reinforcement was 20 cm ${\times}$ 10 cm ${\times}$ 1.4 m. These were selected to ensure that the effect of shear during the bending test would be minimized. Three other beams, made up of ordinary concrete reinforced with steel bars, were tested in the same conditions. For measuring the damping capacity of sandwich beams three methods, Logarithmic Decrement Analysis (LDA), Hilbert Transform Analysis (HTA) and Moving Block Analysis (MBA) were applied. The first two methods are in time domain and the last one is in frequency domain. A comparison between the damping capacity of the beams obtained from all three methods, shows that the damping capacity of the extra lightweight concrete decreases by adding the composite reinforced layers to the upper and lower sides of the beams, and becomes most similar to the damping of the ordinary beams. Also the results show that the stiffness of the extra lightweight concrete beams increases by adding the composite reinforced layer to their both sides and become similar to the ordinary beams.

Instability of Anthocyanin Accumulation in Vitis vinifera L. var. Gamay Freaux Suspension Cultures

  • Qu Junge;Zhang Wei;Yu Xingju;Jin Meifang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권2호
    • /
    • pp.155-161
    • /
    • 2005
  • The inherent instability of metabolite production in plant cell culture-based bioprocessing is a major problem hindering its commercialization. To understand the extent and causes of this instability, this study was aimed at understanding the variability of anthocyanin accumulation during long-term subcultures, as well as within subculture batches, in Vitis vinifera cell cultures. Therefore, four cell line suspensions of Vitis vinifera L. var. Gamay Freaux, A, B, C and D, originated from the same callus by cell-aggregate cloning, were established with starting anthocyanin contents of $2.73\;\pm\;0.15,\;1.45\;\pm\;0.04,\;0.7\;\pm\;0.024\;and\;0.27\;\pm\;0.04$CV (Color Value)/g-FCW (fresh cell weight), respectively. During weekly subculturing of 33 batches over 8 months, the anthocyanin biosynthetic capacity was gradually lost at various rates, for all four cell lines, regardless of the significant difference in the starting anthocyanin content. Contrary to this general trend, a significant fluctuation in the anthocyanin content was observed, but with an irregular cyclic pattern. The variabilities in the anthocyanin content between the subcultures for the 33 batches, as represented by the variation coefficient (VC), were 58, 57, 54, and $84\%$ for V. vinifera cell lines A, B, C and D, respectively. Within one subculture, the VCs from 12 replicate flasks for each of 12 independent subcultures were averaged, and found to be $9.7\%$, ranging from 4 to $17\%$. High- and low-producing cell lines, VV05 and VV06, with 1.8-fold differences in their basal anthocyanin contents, exhibited different inducibilities to L-phenylalanine feeding, methyl jasmonate and light irradiation. The low-producing cell line showed greater potential in enhanced the anthocyanin production.

Distortional buckling performance of cold-formed steel lightweight concrete composite columns

  • Yanchun Li;Aihong Han;Ruibo Li;Jihao Chen;Yanfen Xie;Jiaojiao Chen
    • Steel and Composite Structures
    • /
    • 제50권6호
    • /
    • pp.675-688
    • /
    • 2024
  • Cold-formed steel (CFS) is prone to buckling failure under loading. Lightweight concrete (LC) made of lightweight aggregate has light weight and excellent thermal insulation performance. However, concrete is brittle in nature which is why different materials have been used to improve this inherent behavior of concrete. The distortional buckling (DB) performance of cold-formed steel-lightweight concrete (CFS-LC) composite columns was investigated in this paper. Firstly, the compressive strength test of foam concrete (FC) and ceramsite concrete (CC) was carried out. The performance of the CFS-LC members was investigated. The test results indicated that the concrete-filled can effectively control the DB of the members. Secondly, finite element (FE) models of each test specimen were developed and validated with the experimental tests followed by extensive parametric studies using numerical analysis based on the validated FE models. The results show that the thickness of the steel and the strength of the concrete-filled were the main factors on the DB and bearing capacity of the members. Finally, the bearing capacity of the test specimens was calculated by using current codes. The results showed that the design results of the AIJ-1997 specification were closer to the experimental and FE values, while other results of specifications were conservative.