• Title/Summary/Keyword: Light-weight Noise

Search Result 198, Processing Time 0.045 seconds

Experiment Evaluation for the Heavy-weight Impact Sound of Dry Double-floor System - Effect of Rubber Hardness and Ceiling Structure - (건식이중바닥구조의 중량충격음에 대한 실험적 평가 - 지지구조 및 천장구조 구성에 따른 영향 -)

  • Yeon, Junoh;Kim, Kyoungwoo;Choi, Hyunjuong;Yang, Kwanseop;Kim, Kyungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • The 1st assessment(performance test) was applied to assure the floor impact sound performance for developing the dry double-floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in sub-structure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5 dB. Based on this result, the 2nd assessment(performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry double-floor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPEII-3 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPEII-3 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

Evaluation for The Heavy-weight Impact Sound Reduction Performance of Dry Double-Floor System (건식 이중바닥구조의 중량충격음 저감성능 평가)

  • Yeon, Junoh;Kim, Kyoungwoo;Choi, Hyunjuong;Yang, Kwanseop;Kim, Kyungho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.280-285
    • /
    • 2012
  • The 1st assessment (performance test) was applied to assure the floor impact sound performance for developing the dry double- floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in substructure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5dB. Based on this result, the 2nd assessment (performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry doublefloor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPE-11 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPE-11 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

  • PDF

Investigation of Floor Impact Sound Levels in Rahmen Structure Multi-story Residential Buildings (라멘복합구조 공동주택의 바닥충격음 실태)

  • 정정호;송희수;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.308-311
    • /
    • 2004
  • It is reported that there is a limit in increasing heavy-weight impact noise isolation performance of the load bearing wall system apartments to meet the regulation of the Ministry of Construction and Transportation (MOCT). To increase the heavy-weight impact noise isolation performance, improvement in structural systems such as increasing concrete slab thickness and application of rahmen structure were proposed. In this study floor impact sound levels from toil apartments with two rahmen structure multi-story residential buildings were measured before the construction of the buildings finished. Measurements were made at living room and two bedrooms at each apartment when the finishing processes were finished. The average value of light-weight impact sound level from ten apartments was 56dB (L'$\sub$n,Aw/). The heavy-weight impact sound level was 44dB (L'$\sub$i.Fmax.Aw/) and the impact sound level of the impact ball was 41dB(L'$\sub$i.Fmax.Aw/), As a result floor impact noises at the rahmen structure system were lower than the regulation level.

  • PDF

A Study on Image Noise Reduction Technique for Low Light Level Environment (저조도 환경의 영상 잡음제거 기술에 관한 연구)

  • Lee, Ho-Cheol;Namgung, Jae-Chan;Lee, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.283-289
    • /
    • 2010
  • Recent advance of digital camera results in that image signal processing techniques are widely adopted to railroad security management. However, due to the nature of railroad management many images are acquired in low light level environment such as night scenes. The lack of light causes lots of noise in the image, which degrades image quality and causes errors in the next processes. 3D noise reducing techniques produce better results by using consecutive sequence of images. On the other hand, they cause degradation such as motion blur if there are motions in the sequence. In this paper, we use an adaptive weight filter to estimate more accurate motions and use the result of the adaptive filter to 3D result to improve objective and subjective mage quality.

The Dynamic Characteristic Test of Oil pump Integrated Balance Shaft Module (오일펌프 내장형 밸런스 샤프트 모듈의 동특성 시험)

  • Seong, Eun-Je;Kang, Dae-Gyu;Jeong, Chan-Yong;Han, Chang-Soo;Kim, Myung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.403-408
    • /
    • 2007
  • According as diesel automobile are produced, reduce noise and vibration that is occurred by characteristic of diesel engine, and need engine room layout optimization and research for light weight of parts. Balance Shaft Module is module parts for vehicles engine to improve performance and efficiency of engine and reduce noise and vibration. These days, an oil pump integrated balance shaft module and an oil sump integrated balance shaft module is on the rising for optimizing of engine room. In this study, produced prototype of oil pump integrated type balance shaft module, and achieved dynamic characteristic test about experimental modal analysis and noise/vibration of balance shaft module.

  • PDF

Improvement of Sound Insulation at Low Frequencies Using Resilient Channel (탄성채널을 이용한 석고보드 건식벽체의 저주파 대역 차음성능 개선)

  • Kim, Kyung Ho;Jeon, Jin Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.94-99
    • /
    • 2017
  • Breaking the rigid connection between the two faces of the wall can significantly improve the sound transmission loss of the wall. This is usually achieved by resiliently mounting the gypsum board on one of the two faces of the wall using resilient channel. Resilient channel with less stiffness than that of air cavity could move the resonance frequency of the light-weight wall. So we can get higher sound transmission loss at low frequencies for light-weight wall using resilient channel. It's sound transmission loss is 17 dB higher than that of single stud wall, and 5 dB higher than that of double stud wall.

Evaluation of the Light-weight Floor Impact Sound Reduction Characteristics by Types of Resilient Material (완충재 종류에 따른 경량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Yang, Kwan-Seop;Chung, Jin-Yeon;Im, Jung-Bin;Jeong, Gab-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.830-834
    • /
    • 2008
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS (Styrofoam), recycled urethane types, EVA (Ethylene Vinylacetate) foam rubber, foam PE (Polyethylene), glass fiber & rock wool, recycled tire, foam polypropylene, compressed polyester, and other synthetic materials. In this study, we tested floor impact sound reduction characteristic to a lot of kinds of resilient material. The result of test showed that the amount of the Light-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. As the decreasing dynamic stiffness of resilient material, the impact sound reduction amount is increased, especially in the low frequency domain.

  • PDF

A Plan to guarantee quality of Light-weight Cellular Concrete for floating floor (뜬바닥용 기포콘크리트의 품질확보 방안)

  • 이성호;정갑철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.938-943
    • /
    • 2003
  • The characteristics of lightweight cellular concrete has much influence on the compressive strength and flow from the design of mixture. This study is to investigate the characteristics of the compressive strength and flow for the mixture of lightweight cellular slurry. KS F 4039 was compared to the construction system and quality for lightweight cellular comcrete of floating floor. As the result of this study, the standard of the compression strength for target slurry have to lower and an upper limit of flow was judged to be 230mm

  • PDF

The Study on Sound Absorption According to Content of Foaming Agent In Lightweight Concrete (경량화 콘크리트에서 기포제의 함량에 따른 흡음특성에 관한 연구)

  • Hong, D.K.;Ahn, C.W.;Kang, J.G.;Woo, B.C.;Choi, J.G.;Kang, H.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.955-958
    • /
    • 2006
  • The purpose of this study is to find ways of recycling a great amount of gypsum as by-product from the manufacture of phosphate fertilizer. For the purpose, this researcher investigated physical properties of light weight Porous material using waste gypsum and a foaming agent, Sodium n-dodecyl Sulfate to utilize it as a interior material of construction. To determine such properties, the study examined pore size distribution and pore rate in accordance with contents of Sodium n-dodecyl Sulfate added. Then expanded vermiculite as light-weight aggregate was also added, when pore size distribution, pore rate and sound absorption rate were surveyed and measured.

  • PDF

Review on the Shock Characteristics of the MIL-S-901D Light Weight Shock Machine (MIL-S-901D 경중량 충격시험기의 하중특성에 관한 고찰)

  • 정경훈;김병현;양용진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.750-754
    • /
    • 2001
  • All critical equipment installed aboard naval ships and submarines is required to be shock-qualified by tests on the MIL-S-901D shock test machines where testing is practical. The intent of the shock requirements is to produce combat vessels which are resistant to the underwater explosion weapon attack. To efficiently design equipment for passing a series of shock tests, the shock environment of the shock test machines should be clearly identified. In this paper, the shock characteristics of the MIL-S-901D Light Weight Shock Machine(LWSM) are reviewed, based on the existing test data.

  • PDF