• Title/Summary/Keyword: Light-weight Construction

Search Result 310, Processing Time 0.034 seconds

A Study on the Floor Impact Sound Insulation Performance of Apartments depending on the Damping Materials (완충구조에 의한 공동주택 바닥충격음 차단성능 변화 연구)

  • Gi, No-Gab;Song, Min-Jeong;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.79-82
    • /
    • 2005
  • This study aims to propose fundamental data for development of noise reduction system that is applied to classification for light-weight impact sound. For this reason, eight types of damping materials were constructed in new construction field. Comparison and analysis among the reduction materials were carried out on the acoustical characteristics through test. In the end, the suitability as a damping material was evaluated by the analysis.

  • PDF

High Productive Welding Technologies for Large Container Ship (대형 컨테이너선 건조를 위한 고능률 용접기술)

  • Goo, Yeon-Baeg;Sung, Hee-Joon;Choi, Kee-Young;Kim, Kyeong-Ju
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.80-86
    • /
    • 2009
  • In order to improve productivity of large container ship construction, large heat input and/or high productive welding technologies are necessary. This can be achieved by the joint research and cooperation among steel maker, welding consumable company, welding equipment company and ship yards. Two electrodes SAW process is effective the plate butt welding and partial joint welding, while FGB welding process is for the connection of block to block joint. The higher strength and thicker steel is developed, the more reliable welding procedure such as two electrodes EGW including light weight welding equipment should be developed.

  • PDF

A Experimental Study on the Reinforcing Effects of RC Voided Slab Bridge with Steel Plate/CFS (강판 및 탄소섬유쉬트를 이용한 중공슬래브교의 보강 효과에 관한 실험 연구)

  • 구현본;이정우;정광회;정연주;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.787-792
    • /
    • 2002
  • The voided slab have many advantages, light weight, high load-distribution capacity, low cost and beautiful appearance, etc. But they have also many cracks due to difficulties in designs and construction, analysis, shrinkage, installation and rising force of voided tube. This paper presents the retrofit effects with steel plate(SP)/carbon fiber sheet(CFS) of RC voided slab. As a results of this study, it proved that the strip pattern has to be profitable than full-face pattern in performance such as crack, ultimate loads, stiffness. Retrofit length has many influence on retrofit effects, as the length increases, performance and stability of end blocks higher. Also, it proved that the retrofit on full-section has to be profitable than voided-section in performance, and the overlay length of CFS is desirable to extent approximately and welding(V-cut) has to be efficient than anchors in SP connection. But the kinds of end block and anchor has not influence on retrofit effects.

  • PDF

A Study on Shear Connector Performance Estimation for Plan Extension of RC Apartment Structures (철근콘크리트 공동주택의 평면확장을 위한 연결부의 전단성능 평가에 관한 연구)

  • Kim, Dong Baek
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.27-34
    • /
    • 2015
  • Nowadays, remodeling cases for some apartment like Hyundai through the support of government are reported. Conventionally, balcony and aisle are extended for additional private area or balcony which is supported by new frame is extended. In extension work at site, dowel bar is conventionally inserted in old concrete slab for connection with old and new slab, however, an examination for structural safety is rarely performed prior to construction, if ever, vertical load is only considered for structural analysis. When conventionally connected structures are exposed to earthquake, the old and new structures have individual earthquake behavior with different mode, which may lead the elimination of resistance to earthquake in new structures. As of this reason, new detailing connection system which can have light weight and sufficient ductility performance is developed for application to domestic extension works. Additionally, user manual and specification are also developed for fertilization of application for the developed technology.

Optimum Design of Steel Box Girder Considering Dynamic Characteristics of LRT with Rubber Wheel (경량전철 고무차륜 AGT 하중의 동적특성을 고려한 강박스거더의 단면 최적설계)

  • Lee Hee-Up;Lee Jun S.;Bang Choon-seok;Choi Il-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1197-1204
    • /
    • 2004
  • The metropolitan cities and operation companies of urban transit railway are driving to construct the LRT(light rail transit) system because of the advantage of construction cost and environmental serviceability. This study suggests the optimal design method of steel box girder considering dynamic characteristics of LRT with rubber wheel. The behavior and design constraints are formulated based on the structural design criteria for LRT. Genetic algorithm is applied to the minimum weight design of structural system. A typical example is solved to illustrate the applicability of the proposed minimization algorithm. From the results of application example, the optimum design of steel box girder is successfully accomplished. Therefore, this system can act as a consultant to assist novice designers in the design of steel box girder for LRT with rubber wheel.

  • PDF

Optimal Design of I-type Girder in 2 Span Continuous Steel Bridges by LRFD (LRFD에 의한 2경간 연속 강교량 주부재의 최적화 설계)

  • 국중식;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.78-85
    • /
    • 1999
  • In this study, I-type girders used as main members of a two span continuous steel bridge, are optimally designed by a Load and Resistance Factor Design method(LRFD) using an numerical optimization method. The width, height web thickness and flange thickness of the main girder are set as design variables, and light weight design is attempted by choosing the cross-sectional area as an object function. The main program is coded with C++ and connected with optimization modul ADS, which is coded with FORTRAN. The results of the program show that the stress constraints of noncomposite section during the initial construction stage become active in the positive moment area and the service limit state constaints become active in the negative moment area.

  • PDF

The Analytical Study on the Cause of Fatigue Damage and the Improvement of Fatigue Performance for Orthotropic Steel Deck (강바닥판 피로손상 원인규명 및 피로성능 개선에 관한 해석적 연구)

  • Kyung Kab-Soo;Shin Dong-Ho;Kim Kyo-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.647-654
    • /
    • 2006
  • In orthotropic steel decks, it is likely to have defects due to fatigue damages because most of structural joints(the connection of longitudinal rib and transverse rib, the connection of deck plate and longitudinal rib) are connected by welds. However. orthotropic steel decks have many advantages. such as light weight and reduction of construction time. in comparison with concrete decks. Therefore. they are mostly used in long-span bridges and urban highway bridges. This study consists of the cause identication of fatigue damage and the suggestion of rational thickness on deck plate about the connection of deck plate and longitudinal rib. The results are as follows: fatigue damage cause at the connection of deck plate and longitudinal rib is local deformation in deck plate. And, rational thickness of deck plate is 16mm thickness.

  • PDF

Structural Characteristics of 스냅핏 Type Composite Deck Panel (착탈결구식 연결구조 복합소재 데크의 거동특성 분석)

  • Lee Sung-Woo;Jeong Gyu-Sang;Cho Sung-Hwan;Sim Young-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.719-724
    • /
    • 2006
  • Owing to its special features of light weight, high durability, corrosion-resistant, composite material used in civil infrastructure can not only solve fundamental problems of deterioration and corrosion, but also reduce both construction and maintenance cost significantly. Composite deck panels of 스냅핏 type connection previously designed and fabricated have been redesigned herein. The sensitivity of gaps between snap-fits and tip angles was investigated. Stacking sequence of plies was scrutinized in order to facilitate pultrusion process. Deck panels of redesigned configuration due to bending has been analyzed. A comparison between the preliminary and modified deck design has been made.

  • PDF

Behavior of Concrete Track Girder for Magnetic Levitation Train (자기부상열차구조물에 있어서 콘크리트선로거더의 거동)

  • Kang Bo-Soon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.686-691
    • /
    • 2005
  • State of the art and current issues related with the RC and PSC structure system for the magnetic levitation train were investigated. The German and China magnetic levitation train adopted a new kind of a structure to enable high-speed transportation, which allows the use of the space over a ground. The loading from magnetic levitation trains is light-weight compared with a regular train due to load distribution to a supporting structure. Therefore, the magnetic levitation train is considered an economical and efficient transportation system, and is also an environmentally-sustainable structure. In this paper, the structural design and construction technology specific to a magnetic levitation train were discussed, and structural considerations related with an actual operation of the train were pointed out. In addition, the future research area of a magnetic levitation train was proposed

  • PDF

A Study on the RC and PSC structure System of the Transrapid in Germany (독일자기부상열차 Transrapid의 콘크리트 교각선로구조물에 관한 연구)

  • Kang, Bo-Soon;Kim, Soo-Sam
    • Journal of the Korean Society for Railway
    • /
    • v.1 no.1 s.1
    • /
    • pp.20-29
    • /
    • 1998
  • State of the art and current issues related with the RC and PSC structure system for the German magnetic levitation train "Transrapid" were investigated. The German magnetic levitation train adopted a new kind of a structure to enable high-speed transportation, which allows the use of the space over a ground. The loading from Transrapid is light-weight compared with a regular train due to load distribution to a supporting structure. Therefore, Transrapid is considered an economical and efficient transportation system, and is also an environmentally-sustainable structure. In this paper, the structural design and construction technology specific to a magnetic levitation train were discussed, and structural considerations related with an actual operation of the train were pointed out. In addition, the future research area of a magnetic levitation train was proposed.

  • PDF