• 제목/요약/키워드: Light-off temperature

검색결과 123건 처리시간 0.033초

High-performance thin-film transistor with a novel metal oxide channel layer

  • Son, Dae-Ho;Kim, Dae-Hwan;Kim, Jung-Hye;Sung, Shi-Joon;Jung, Eun-Ae;Kang, Jin-Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.222-222
    • /
    • 2010
  • Transparent semiconductor oxide thin films have been attracting considerable attention as potential channel layers in thin film transistors (TFTs) owing to their several advantageous electrical and optical characteristics such as high mobility, high stability, and transparency. TFTs with ZnO or similar metal oxide semiconductor thin films as the active layer have already been developed for use in active matrix organic light emitting diode (AMOLED). Of late, there have been several reports on TFTs fabricated with InZnO, AlZnSnO, InGaZnO, or other metal oxide semiconductor thin films as the active channel layer. These newly developed TFTs were expected to have better electrical characteristics than ZnO TFTs. In fact, results of these investigations have shown that TFTs with the new multi-component material have excellent electrical properties. In this work, we present TFTs with inverted coplanar geometry and with a novel HfInZnO active layer co-sputtered at room temperature. These TFTs are meant for use in low voltage, battery-operated mobile and flexible devices. Overall, the TFTs showed good performance: the low sub-threshold swing was low and the $I_{on/off}$ ratio was high.

  • PDF

Primary production by phytoplankton in the territorial seas of the Republic of Korea

  • An Suk, Lim;Hae Jin, Jeong
    • ALGAE
    • /
    • 제37권4호
    • /
    • pp.265-279
    • /
    • 2022
  • The primary production (PP) by phytoplankton in marine ecosystems is essential for carbon cycling and fueling food webs. Hence, estimating the PP in the territorial sea of each country is a necessary step to achieving carbon neutrality. To estimate the PP in the territorial sea of the Republic of Korea from 2005 to 2021, we analyzed various physiochemical parameters, such as sea surface temperature (SST), Secchi depth, and concentrations of chlorophyll-a and nutrients in the seas of five regions, including the East Sea, West Sea, western South Sea, eastern South Sea, and the waters off Jeju Island. During the 17-year study period, the SST tended to increase, while the nutrient concentrations declined, except in the Jeju area. Overall, the PP did not show a specific temporal trend, but daily PP in the western South Sea was the highest among the five regions. Moreover, the maximum PP in the Korean territorial waters (76,450 km2) was estimated at 11,227 Gg C y-1, which accounts for 0.03% of the global PP. The results may give insights into a better understanding of the PP, further resource utilization, and environmental sustainability in the studied region.

Plasma Electrolytic Oxidation in Surface Modification of Metals for Electronics

  • Sharma, Mukesh Kumar;Jang, Youngjoo;Kim, Jongmin;Kim, Hyungtae;Jung, Jae Pil
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.27-33
    • /
    • 2014
  • This paper presents a brief summary on a relatively new plasma aided electrolytic surface treatment process for light metals. A brief discussion regarding the advantages, principle, process parameters and applications of this process is discussed. The process owes its origin to Sluginov who discovered an arc discharge phenomenon in electrolysis in 1880. A similar process was studied and developed by Markov and coworkers in 1970s who successfully deposited an oxide film on aluminium. Several investigation thereafter lead to the establishment of suitable process parameters for deposition of a crystalline oxide film of more than $100{\mu}m$ thickness on the surface of light metals such as aluminium, titanium and magnesium. This process nowadays goes by several names such as plasma electrolytic oxidation (PEO), micro-arc oxidation (MOA), anodic spark deposition (ASD) etc. Several startups and surface treatment companies have taken up the process and deployed it successfully in a range of products, from military grade rifles to common off road sprockets. However, there are certain limitations to this technology such as the formation of an outer porous oxide layer, especially in case of magnesium which displays a Piling Bedworth ratio of less than one and thus an inherent non protective oxide. This can be treated further but adds to the cost of the process. Overall, it can be said the PEO process offers a better solution than the conventional coating processes. It offers advantages considering the fact that he electrolyte used in PEO process is environmental friendly and the temperature control is not as strict as in case of other surface treatment processes.

Separating nanocluster Si formation and Er activation in nanocluster-Si sensitized Er luminescence

  • 김인용;신중훈;김경중
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.109-109
    • /
    • 2010
  • $Er^{3+}$ ion shows a stable and efficient luminescence at 1.54mm due to its $^4I_{13/2}\;{\rightarrow}\;^4I_{15/2}$ intra-4f transition. As this corresponds to the low-loss window of silica-based optical fibers, Er-based light sources have become a mainstay of the long-distance telecom. In most telecom applications, $Er^{3+}$ ions are excited via resonant optical pumping. However, if nanocluster-Si (nc-Si) are co-doped with $Er^{3+}$, $Er^{3+}$ can be excited via energy transfer from excited electrical carriers in the nc-Si as well. This combines the broad, strong absorption band of nc-Si with narrow, stable emission spectra of $Er^{3+}$ to allow top-pumping with off-resonant, low-cost broadband light sources as well as electrical pumping. A widely used method to achieve nc-Si sensitization of $Er^{3+}$ is high-temperature annealing of Er-doped, non-stoichiometric amorphous thin film with excess Si (e.g.,silicon-rich silicon oxide(SRSO)) to precipitate nc-Si and optically activate $Er^{3+}$ at the same time. Unfortunately, such precipitation and growth of nc-Si into Er-doped oxide matrix can lead to $Er^{3+}$ clustering away from nc-Si at anneal temperatures much lower than ${\sim}1000^{\circ}C$ that is necessary for full optical activation of $Er^{3+}$ in $SiO_2$. Recently, silicon-rich silicon nitride (SRSN) was reported to be a promising alternative to SRSO that can overcome this problem of Er clustering. But as nc-Si formation and optical activation $Er^{3+}$ remain linked in Er-doped SRSN, it is not clear which mechanism is responsible for the observed improvement. In this paper, we report on investigating the effect of separating the nc-Si formation and $Er^{3+}$ activation by using hetero-multilayers that consist of nm-thin SRSO or SRSN sensitizing layers with Er-doped $SiO_2$ or $Si_3N_4$ luminescing layers.

  • PDF

수도 기계이앙 육묘에 관한 연구 Ⅵ.제6보 상자육묘시 피복자재이용 효과 (Rice Seedling Establishment for Machine Transplanting VI. Effect of Mulching Materials on Raising Rice Seedling at Tray for Machine Transplanting)

  • 윤용대;양원하;곽용호;박석홍;박래경
    • 한국작물학회지
    • /
    • 제31권1호
    • /
    • pp.9-15
    • /
    • 1986
  • 1983년부터 1984년까지 2년간에 걸쳐 통일형품종인 남풍벼와 태백벼, Japonica 품종인 서남벼와 당진벼를 공시하여 파종시기를 1모작 적파에 해당하는 4월 15∼20일, 2모작 만파에 해당하는 5월 10일의 두 시기로 각피부자재를 이용한 간양육묘방법 시험을 작물시험장 답작포장에서 실시하였던 결과를 요약하면 다음과 같다. 1. 중북부 1모작 지대에서 한파 및 적파 상자육묘시에는 비닐터널+silverpoly멀칭 또는 비닐터널+부직포멀칭구가 야간온도가 높고 주야간의 온도교차가 적어 발아율이 높았으며 뜸묘발생이 적었을 뿐 아니라 차광에 의한 백화묘발생이 적었다. 2. 남부 2모작 기계이앙용 만파육묘시에는 관행 비닐터널구 보다 silverpoly 또는 부직포터널구가 차광으로 인한 주간 온도의 저하로 고온장해의 위험성이 적고 출아록화기의 광조절이 가능하여 출아율이 높고 묘생육이 양호하였다. 3. 중북부지망 기계이앙 적파육묘는 간양출아후 보온밭못자리 및 보온절애못자리에 치상하고 록화기에 비닐터널 위에 silverpoly 또는 부직포를 멀칭하는 것이 록화관리가 양호한 편이다. 4. 남부 2모작지대 기계이앙재배를 위한 만파육묘에서는 보존 비닐터널 대신 silverpoly 또는 부직포터널로 못자리출아육묘를 하더라도 건묘육성의 가능성이 인정되었다.

  • PDF

수온과 광량에 따른 다시마 초기 생활사의 발아와 성장 (Germination and Growth of Laminaria japonica (Phaeophyta) Microscopic Stages under Different Temperatures and Photon Irradiances)

  • 강래선;고철환
    • 한국수산과학회지
    • /
    • 제32권4호
    • /
    • pp.438-443
    • /
    • 1999
  • 여러 가지 수온과 광량 하에서 다시마 포자의 발아, 암배우체의 성장과 성숙, 그리고 어린 포자체의 성장을 조사하였고, 이 결과를 동남해안의 수온과 특성과 결부하여 해석하였다. 수온 $25^{\circ}C$에서 포자들은 전혀 발아하지 않았다. $5\~20^{\circ}C$에서의 발아율은 $70\~86\%$였다. $5\~20^{\circ}C$에서 포자의 발아율은 광량에 따라 달랐다. $150 {\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$이하에서 배양한 포자의 발아율은 $70 {\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$이하에서 배양한 포자의 발아율에 비해 낮았다. 암배우체는 $20^{\circ}C$에서 영양세포를 가장 많이 형성하였으나, 이 수온에서는 성숙하지 않았다. 수온 $5\~15^{\circ}C$에서는 광량이 증가할수록 영양세포의 생산량이 줄어들었으나, 성숙률은 오히려 높아졌다. 또한 수온이 낮아질수록 성숙률은 높아졌으나, 반면 영양세포의 생산량은 줄어들었다. 어린포자체의 성장에 대한 최적수온은 $10^{\circ}C$였으며, $70 {\mu}E{\cdot}m^{-2}{\cdot}s^{-1}$의 광량은 어린 포자체의 성장하기에 충분한 광량으로 판단되었다. 동남해안의 수온특성을 볼 때, 다시마의 지리적 분포를 벗어난 이 지역에서도 7월 이전에 방출된 포자는 배우체를 거쳐 어린 포자체로 발달할 수 있다. 그러나 이러한 조건 속에서도 자연 개체군이 존속할 수 없는 이유는 여름철 높은 수온에 의한 어린 포자체의 사망으로 요약할 수 있다.

  • PDF

투명 전도성 ZITO/Ag/ZITO 다층막 필름 적용을 위한 아크릴레이트 기반 고분자분산액정의 전기광학적 특성 최적화 (Optimization of Electro-Optical Properties of Acrylate-based Polymer-Dispersed Liquid Crystals for use in Transparent Conductive ZITO/Ag/ZITO Multilayer Films)

  • 조정대;김양배;허기석;김은미;홍진후
    • 공업화학
    • /
    • 제31권3호
    • /
    • pp.291-298
    • /
    • 2020
  • 본 연구에서는 RF/DC 마그네트론 증착법을 이용하여 실온에서 유리 기판 상에 ZITO/Ag/ZITO 다층막 투명전극을 제조하였다. ZITO/Ag/ZITO (100/8/42 nm)로 이루어진 다층막 구조에 대해, 면저항이 9.4 Ω/㎡이고 550 nm에서 투과도가 83.2%인 투명 전도성 필름이 얻어졌다. ZITO/Ag/ZITO 다층막 필름의 면저항 및 투과도 특성은 적외선(열선)을 효과적으로 차단할 수 있기 때문에 고분자분산액정(polymer-dispersed liquid crystal, PDLC) 기반 스마트 윈도우 적용에 매우 유용함을 알 수 있었으며 이로 인해 에너지 절약형 스마트 유리로서의 응용도 가능할 것으로 판단된다. 제조된 ZITO/Ag/ZITO 다층막 투명전극을 적용한 2관능성 우레탄 아크릴레이트 기반 PDLC 시스템에 있어서 PDLC 층 두께 및 자외선(ultraviolet, UV) 세기 변화가 전기광학적 특성, 광중합 동력학 및 표면 형태학에 미치는 영향을 조사하였다. 15 ㎛의 PDLC 층 두께를 가지며 2.0 mW/c㎡의 UV 세기로 광경화된 PDLC 셀이 우수한 off-state 불투명도, 높은 on-state 투과도 및 양호한 구동 전압을 나타냈다. 또한, 본 연구에서 제조된 최적 조건의 PDLC 기반 스마트 윈도우는 광을 효율적으로 산란시킬 수 있는 2~5 ㎛ 크기의 양호한 마이크로 구조를 갖는 액정 droplet들이 형성되었으며, 이로 인해 우수한 최종 물성을 갖는 PDLC 셀이 제조되었다.

$SiN_x$/고분자 이중층 게이트 유전체를 가진 Zinc 산화물 박막 트랜지스터의 저온 공정에 관한 연구 (Study on the Low-temperature process of zinc oxide thin-film transistors with $SiN_x$/Polymer bilayer gate dielectrics)

  • 이호원;양진우;형건우;박재훈;구자룡;조이식;권상직;김우영;김영관
    • 한국응용과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.137-143
    • /
    • 2010
  • Oxide semiconductors Thin-film transistors are an exemplified one owing to its excellent ambient stability and optical transparency. In particular zinc oxide (ZnO) has been reported because It has stability in air, a high electron mobility, transparency and low light sensitivity, compared to any other materials. For this reasons, ZnO TFTs have been studied actively. Furthermore, we expected that would be satisfy the demands of flexible display in new generation. In order to do that, ZnO TFTs must be fabricated that flexible substrate can sustain operating temperature. So, In this paper we have studied low-temperature process of zinc oxide(ZnO) thin-film transistors (TFTs) based on silicon nitride ($SiN_x$)/cross-linked poly-vinylphenol (C-PVP) as gate dielectric. TFTs based on oxide fabricated by Low-temperature process were similar to electrical characteristics in comparison to conventional TFTs. These results were in comparison to device with $SiN_x$/low-temperature C-PVP or $SiN_x$/conventional C-PVP. The ZnO TFTs fabricated by low-temperature process exhibited a field-effect mobility of $0.205\;cm^2/Vs$, a thresholdvoltage of 13.56 V and an on/off ratio of $5.73{\times}10^6$. As a result, We applied experimental for flexible PET substrate and showed that can be used to ZnO TFTs for flexible application.

Fabrication of Microwire Arrays for Enhanced Light Trapping Efficiency Using Deep Reactive Ion Etching

  • 황인찬;서관용
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.454-454
    • /
    • 2014
  • Silicon microwire array is one of the promising platforms as a means for developing highly efficient solar cells thanks to the enhanced light trapping efficiency. Among the various fabrication methods of microstructures, deep reactive ion etching (DRIE) process has been extensively used in fabrication of high aspect ratio microwire arrays. In this presentation, we show precisely controlled Si microwire arrays by tuning the DRIE process conditions. A periodic microdisk arrays were patterned on 4-inch Si wafer (p-type, $1{\sim}10{\Omega}cm$) using photolithography. After developing the pattern, 150-nm-thick Al was deposited and lifted-off to leave Al microdisk arrays on the starting Si wafer. Periodic Al microdisk arrays (diameter of $2{\mu}m$ and periodic distance of $2{\mu}m$) were used as an etch mask. A DRIE process (Tegal 200) is used for anisotropic deep silicon etching at room temperature. During the process, $SF_6$ and $C_4F_8$ gases were used for the etching and surface passivation, respectively. The length and shape of microwire arrays were controlled by etching time and $SF_6/C_4F_8$ ratio. By adjusting $SF_6/C_4F_8$ gas ratio, the shape of Si microwire can be controlled, resulting in the formation of tapered or vertical microwires. After DRIE process, the residual polymer and etching damage on the surface of the microwires were removed using piranha solution ($H_2SO_4:H_2O_2=4:1$) followed by thermal oxidation ($900^{\circ}C$, 40 min). The oxide layer formed through the thermal oxidation was etched by diluted hydrofluoric acid (1 wt% HF). The surface morphology of a Si microwire arrays was characterized by field-emission scanning electron microscopy (FE-SEM, Hitachi S-4800). Optical reflection measurements were performed over 300~1100 nm wavelengths using a UV-Vis/NIR spectrophotometer (Cary 5000, Agilent) in which a 60 mm integrating sphere (Labsphere) is equipped to account for total light (diffuse and specular) reflected from the samples. The total reflection by the microwire arrays sample was reduced from 20 % to 10 % of the incident light over the visible region when the length of the microwire was increased from $10{\mu}m$ to $30{\mu}m$.

  • PDF

Enhancement in the photocurrent of ZnO nanoparticles by thermal annealing

  • Byun, Kwang-Sub;Cho, Kyuong-Ah;Jun, Jin-Hyung;Seong, Ho-Jun;Kim, Sang-Sig
    • 전기전자학회논문지
    • /
    • 제13권1호
    • /
    • pp.57-64
    • /
    • 2009
  • The optoelectrical characteristics of the ZnO nanoparticles (NPs) annealed in vacuum or oxygen condition from $200^{\circ}C$ to $600^{\circ}C$ were examined. Increased on-off ratio (or, the ratio of photocurrent to dark current) was observed when they were annealed at $300^{\circ}C$, $400^{\circ}C$ and $500^{\circ}C$ with the values enhanced about 4 orders compared to the as-prepared ZnO NPs in both annealing conditions, while the maximum efficiency was shown at the annealing temperature of $600^{\circ}C$ for the ZnO NPs annealed in vacuum with the value of 29.8 mA/W and at the temperature of $500^{\circ}C$ for those annealed in oxygen condition with the value of 40.3 mA/W. Photoresponse behavior of the ZnO NPs annealed in oxygen showed the sharp increase right after the ir exposure to the light followed by the slow decay and saturation during steady illumination, differing from the ZnO NPs annealed in vacuum which only exhibited the gradual increase. This difference occurred due to the curing effect of the oxygen vacancies. SEM images indicated no change in their morphologies with annealing, indicating the change in their internal structures by annealing, and most remarkably at $600^{\circ}C$. As for their photoluminescence(PL) spectra, the decrease of the deep-level(DL) emission was observed when they were annealed in oxygen at $400^{\circ}C$, and not at $200^{\circ}C$ and $600^{\circ}C$.

  • PDF