• Title/Summary/Keyword: Light-emitting Diode

Search Result 1,407, Processing Time 0.037 seconds

Growth and Phytochemical Contents of Ice Plant as Affected by Light Quality in a Closed-type Plant Production System (완전제어형 식물생산시스템에서 광질에 따른 아이스플랜트의 생육과 기능성물질 함량)

  • Kim, Young Jin;Kim, Hye Min;Hwang, Seung Jae
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.878-885
    • /
    • 2016
  • A study was conducted to examine the effects of light quality on the growth and phytochemical contents of ice plant in a closed-type plant production system. Seeds were sown in a 128-cell plug tray using rockwool. The seedlings were then transplanted into a deep floating technique system with recirculating nutrient solution (EC $1.5dS{\cdot}m^{-1}$, pH 6.5) in a closed-type plant production system. The nutrient solution was supplied at two weeks after transplanting with 2.0 mM NaCl concentration in all treatments for the development of the bladder cells. The three light sources with different light qualities used were as followed; FL (fluorescent lamps), combined RW LED (red:white = 7:3), and combined RBW LED (red:blue:white = 8:1:1) at $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD with a photoperiod of 14/10 hours (light/dark). The results showed that the FL treatment had the greatest growth enhancement effects on the leaf area and the fresh and dry weights of the shoots and roots. The SPAD values were significantly higher under the FL and RBW LED treatments, at 29.8 and 30.6, respectively. No significant difference was observed in salinity under all treatments. Chlorophyll fluorescence was significantly higher under the FL treatment. The total phenol content and antioxidant activity were the highest under the RBW LED treatment. The total flavonoid content was significantly higher under the RBW LED and FL treatments. Hence, the results indicate that the growth of ice plant was maximized under the FL treatment. The phytochemical contents were maximized under the RBW LED treatment.

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

Luminescence Characteristics of Mg2+·Ba2+ Co-Doped Sr2SiO4:Eu Yellow Phosphor for Light Emitting Diodes (LED용Mg2+·Ba2+Co-Doped Sr2SiO4:Eu 노란색 형광체의 발광특성)

  • Choi, Kyoung-Jae;Jee, Soon-Duk;Kim, Chang-Hae;Lee, Sang-Hyuk;Kim, Ho-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.147-151
    • /
    • 2007
  • An improvement for the efficiency of the $Sr_{2}SiO_{4}:Eu$ yellow phosphor under the $450{\sim}470\;nm$ excitation range have been achieved by adding the co-doping element ($Mg^{2+}\;and\;Ba^{2+}$) in the host. White LEDs were fabricated through an integration of an blue (InGaN) chip (${\lambda}_{cm}=450\;nm$) and a blend of two phosphors ($Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor) in a single package. The InGaN-based two phosphor blends ($Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor) LEDs showed three bands at 450 nm, 550 nm and 640 nm, respectively. The 450 nm emission band was due to a radiative recombination from an InGaN active layer. This 450 nm emission was used as an optical transition of the $Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor. As a consequence of a preparation of white LEDs using the $Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor yellow phosphor and CaS:Eu red phosphor, the highest luminescence efficiency was obtained at the 0.03 mol $Ba^{2+}$ concentration. At this time, the white LEDs showed the CCT (5300 K), CRI (89.9) and luminous efficacy (17.34 lm/W).

The Properties of Hole Injection and Transport Layers on Polymer Light Emitting Diode (정공 주입층 및 수송층에 따른 고분자 유기발광다이오드의 특성 연구)

  • Shin, Sang-Baie;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.37-42
    • /
    • 2007
  • We fabricated the polymer light emitting diodes (PLEDs) with ITO/PEDOT:PSS/PVK/PFO:MEH-PPV/LiF/Al structures. The effect of the thickness of PEDOT:PSS hole injection layer(HIL) on the electrical and optical properties of PLEDs was investigated. In addition, PVK hole transport layer(HTL) was introduced in the PLED device, and compared the properties of the PLEDS with and without PVX layer. All organic film layers were prepared by the spin coating method on the plasma treated ITO/glass substrates. As the thickness of PEDOT:PSS film layer decreased from about 80 nm to 50 nm, the luminance of PLED device increased from $220cd/m^2$에서 $450cd/m^2$. This may be ascribed to the increased transportation efficiency of the holes into the emission layer of PLED. The maximum current density and luminance were obtained fir the PLED device with PVX hole transport layer, showing that the current density and luminance were $268mA/cm^2\;and\;540cd/m^2$ at 12V, respectively. This values were improved by about 14% and 22% in current density and luminance compared with the PLED device without PVK layer.

  • PDF

Growth of InGaN/AlGaN heterostructure by mixed-source HVPE with multi-sliding boat system (Multi-sliding boat 방식을 이용한 혼합소스 HVPE에 의한 InGaN/AlGaN 이종 접합구조의 성장)

  • Jang, K.S.;Kim, K.H.;Hwang, S.L.;Jeon, H.S.;Choi, W.J.;Yang, M.;Ahn, H.S.;Kim, S.W.;Yoo, J.;Lee, S.M.;Koike, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.162-165
    • /
    • 2006
  • The selective growth of InCaN/AlGaN light emitting diodes was performed by mixed-source hydride vapor phase epitaxy (HVPE). In order to grow the InGaN/AlGaN heterosturcture consecutively, a special designed multi-sliding boat was employed in our mixed-source HVPE system. Room temperature electroluminescence spectum of the SAG-InGaN/AlGaN LED shows an emission peak wavelength of 425 nm at injection current 20 mA. We suggest that the mixed-source HVPE method with multi-sliding boat system is possible to be one of the growth methods of III-nitrides LEDs.

Sensibility Evaluation of Color Temperature and Rendering Index to the LED-Based White Illumination (LED 기반 백색 조명의 색온도 및 연색지수에 따른 감성 평가)

  • Jee, Soon-Duk;Choi, Kyoung-Jae;Kim, Ho-Kun;Lee, Sang-Hyuk
    • Science of Emotion and Sensibility
    • /
    • v.9 no.4
    • /
    • pp.353-366
    • /
    • 2006
  • The aim of this study is to characterize the optical properties of white light-emitting diodes lighting modules and then to evaluate the sensitivity of students and teachers in reacting to the optical properties of these modules. For the sake of this study, each of 5 lighting modules was introduced to the 5 test cabinets. The 5 test cabinets were evaluated and analyzed the student and teacher's sensitivity reaction. We have selected If questions on sensitivity of the lighting and evaluated these questions with semantic differential method. To verify the reliability and objectivity of the questions, the feasibility survey was carried out by a preliminary test. As a result of the test, the sensitivities on the test cabinets were classified the 4 factors, namely, activity as the first factor, stability as the second one , potency as the third one and sensitive image as the fourth one respectively. By the evaluation of student and teacher's sensitivity on the correlated color temperature, they preferred the cabinet with the higher color temperature in view of the activity and potency. And they preferred the cabinet with the lower color temperature in view of the stability factor. In the sensitive image, they preferred the 5800K, bluish white lighting regardless of the color temperature. By the evaluation on the color rendering index, they preferred the cabinet with the higher color rendering index in view of the activity, stability and sensitive image. In the potency factor, they preferred the white lighting with the middle color rendering index.

  • PDF

Effect of 840 nm Light-Emitting Diode(LED) Irradiation on Monosodium Iodoacetate-Induced Osteoarthritis in Rats (흰쥐의 MIA 유발 무릎 뼈관절염에 대한 840 nm LED의 효과)

  • Jekal, Seung-Joo;Kwon, Pil-Seung;Kim, Jin-Kyung;Lee, Jae-Hyoung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.2
    • /
    • pp.151-159
    • /
    • 2014
  • PURPOSE: The purpose of this study was to evaluate whether light-emitting diodes (LED) irradiation could be effective in a noninvasive, therapeutic device for the treatment of osteoarthritis(OA). METHODS: Twenty-four male Sprague-Dawley rats were divided into four groups: Vehicle control (saline); monosodium iodoacetate-injection (MIA); LED irradiation after MIA injection (MIA-LED); indomethacin-treatment after MIA injection (MIA-IMT). OA was induced by intra-articular injection of 3 mg MIA through the patellar ligament of the right knee. Vehicle control rats were injected with an equivalent volume of saline. The LED was irradiated for 15 min/day for a week after 7 days of MIA treatment. To compare with the effect of LED irradiation, the indomethacin was administrated 20 mg/kg twice a week orally after 7 days of MIA treatment. Knee joints were removed and fixed overnight in 10% neutral buffered formalin and decalcified by EDTA for 2 week before being embedded in paraffin. The assessment of OA induction were monitored by knee movement and radiographic finding. Histologic analysis were performed following staining with hematoxylin and eosin, safranin O-fast green, or toluidine blue, picrosirius red, and histologic changes were scored according to a modified Mankin system. Apoptotic cell in tissue sections was detected using TUNEL method. RESULTS: Radiographic examination could not show the differences between the MIA-treated and the MIA-LED-treated rats. In the histologic analysis, however, LED irradiation prevented cartilage damage and subchondral bone destruction, and significantly reduced mononuclear inflammatory cell infiltration and pannus formation. LED irradiation also reduced apoptosis of cartilage cells, but it prevented apoptosis of infiltrated inflammatory cells in synovium. In addition, LED irradiation showed an increase of collagen production in the meniscus. CONCLUSION: These results suggest that the 840 nm LED irradiation would be a suitable non-thermal phototherapy for the treatment of OA, as a cartilage protection and anti-inflammatory modality.

Adjunctive effect of 470-nm and 630-nm light-emitting diode irradiation in experimental periodontitis treatment: a preclinical study

  • Dongseob Lee;Jungwon Lee;Sun-Hee Ahn;Woosub Song;Ling Li;Yang-Jo Seol;Yong-Moo Lee;Ki-Tae Koo
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.1
    • /
    • pp.13-24
    • /
    • 2024
  • Purpose: This study investigated the adjunctive effect of light-emitting diodes (LEDs) in the treatment of experimental periodontitis. Methods: Experimental periodontitis was induced by placing ligatures around the mandibular second, third, and fourth premolars of 6 beagles for 3 months. After ligature removal, periodontitis progressed spontaneously for 2 months. The animals' hemimandibles were allocated among the following 3 groups: 1) no treatment (control), 2) scaling and root planing (SRP), and 3) SRP with LED irradiation at 470-nm and 630-nm wavelengths (SRP/LED). The probing pocket depth (PPD) and gingival recession (GR) were measured at baseline, 6 weeks, and 12 weeks. The clinical attachment level (CAL) was calculated. After 12 weeks, histological and histomorphometric assessments were performed. The distances from the gingival margin to the apical extent of the junctional epithelium (E) and to the connective tissue (CT) attachment were measured, as was the total length of soft tissue (ST). Results: PPD and CAL increased at 12 weeks compared with baseline in the control group (6.31±0.43 mm to 6.93±0.50 mm, and 6.46±0.60 mm to 7.61±0.78 mm, respectively). PPD and CAL decreased at 12 weeks compared with baseline in the SRP group (6.01±0.59 to 4.81±0.65 mm, and 6.51±0.98 to 5.39±0.93 mm, respectively). PPD and CAL decreased at 12 weeks compared with baseline in the SRP/LED group (6.03±0.39 to 4.46±0.47 mm, and 6.11±0.47 to 4.78±0.57 mm, respectively). The E/ST and CT/ST ratios significantly differed among the 3 groups (P<0.05). The clinical parameters and histologic findings demonstrated that 470-nm and 630-nm wavelength LED irradiation accompanying SRP could improve treatment results. Conclusions: Within the study limitations, 470 nm and 630 nm wavelength LED irradiation might provide additional benefits for periodontitis treatment.

Effect of Supplementary Radiation on Growth of Greenhouse-Grown Kales (온실재배 케일의 생장에 미치는 보광효과)

  • Heo, Jeong-Wook;Kim, Hyeon-Hwan;Lee, Kwang-Jae;Yoon, Jung-Boem;Lee, Joung-Kwan;Huh, Yoon-Sun;Lee, Ki-Yeol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.38-45
    • /
    • 2015
  • BACKGROUND: For commercial production of greenhouse crops under shorter day length condition, supplementary radiation has been usually achieved by the artificial light source with higher electric consumption such as high-pressure sodium, metal halide, or incandescent lamps. Light-Emitting Diodes (LEDs) with several characteristics, however, have been considered as a novel light source for plant production. Effects of supplementary lighting provided by the artificial light sources on growth of Kale seedlings during shorter day length were discussed in this experiment. METHODS AND RESULTS: Kale seedlings were grown under greenhouse under the three wave lamps (3 W), sodium lamps (Na), and red LEDs (peak at 630 nm) during six months, and leaf growth was observed at intervals of about 30 days after light exposure for 6 hours per day at sunrise and sunset. Photosynthetic photon flux (PPF) of supplementary red LEDs on the plant canopy was maintained at 0.1 (RL), 0.6 (RM), and $1.2(RH){\mu}mol/m^2/s$ PPF. PPF in 3 W and Na treatments was measured at $12{\mu}mol/m^2/s$. Natural light (NL) was considered as a control. Leaf fresh weight of the seedlings was more than 100% increased under the 3 W, Na and RH treatment compared to natural light considering as a conventional condition. Sugar synthesis in Kale leaves was significantly promoted by the RM or RH treatment. Leaf yield per $3.3m^2$ exposed by red LEDs of $1.2{\mu}mol/m^2/s$ PPF was 9% and 16% greater than in 3W or Na with a higher PPF, respectively. CONCLUSION: Growth of the leafy Kale seedlings were significantly affected by the supplementary radiation provided by three wave lamp, sodium lamp, and red LEDs with different light intensities during the shorter day length under greenhouse conditions. From this study, it was suggested that the leaf growth and secondary metabolism of Kale seedlings can be controlled by supplementary radiation using red LEDs of $1.2{\mu}mol/m^2/s$ PPF as well as three wave or sodium lamps in the experiment.

Optical Transceiver Module for Next-generation Automotive Optical Network, MOST1000 (차세대 자동차 광네트워크 MOST1000 용 광트랜시버 모듈)

  • Kim, Gye Won;Hwang, Sung Hwan;Lee, Woo-Jin;Kim, Myoung Jin;Jung, Eun Joo;An, Jong Bea;Kim, Jin Hyeok;Moon, Jong Ha;Rho, Byung Sup
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.4
    • /
    • pp.196-200
    • /
    • 2013
  • Heretofore, it was enough that most of optical transceiver modules for automotive networks have the performance of data rate from 10 Mbps to 150 Mbps. As the required data rate in automotive infotainment systems has recently been increasing, the development of a new optical transceiver having high speed data rate over 1Gbps is now required. Therefore, we suggested a next-generation bi-directional optical transceiver module using vertical cavity surface emitting laser technology and plastic clad fiber technology, for the next-generation automotive optical network, MOST1000. We fabricated the high-speed and compact optical transceiver having 1 Gbps data rate and -22 dBm sensitivity satisfying bit error rate $10^{-12}$.