• Title/Summary/Keyword: Light-curing

Search Result 464, Processing Time 0.027 seconds

Effects of 3 different light-curing units on the physico-mechanical properties of bleach-shade resin composites

  • Azin Farzad;Shahin Kasraei;Sahebeh Haghi;Mahboubeh Masoumbeigi;Hassan Torabzadeh;Narges Panahandeh
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.9.1-9.11
    • /
    • 2022
  • Objectives: This study investigated the microhardness, flexural strength, and color stability of bleach-shade resin composites cured with 3 different light-curing units. Materials and Methods: In this in vitro experimental study, 270 samples were fabricated of bleach and A2 shades of 3 commercial resin composites (Point 4, G-aenial Anterior, and Estelite Sigma Quick). Samples (n = 5 for each trial) were cured with Bluephase N, Woodpecker LED.D, and Optilux 501 units and underwent Vickers microhardness and flexural strength tests. The samples were tested after 24 hours of storage in distilled water. Color was assessed using a spectrophotometer immediately after preparation and 24 hours after curing. Data were analyzed using 3-way analysis of variance and the Tukey test (p ≤ 0.001). Results: Samples cured with Optilux exhibited the highest and those cured with LED.D exhibited the lowest microhardness (p = 0.023). The bleach shade of Point 4 composite cured with Optilux displayed the highest flexural strength, while the same composite and shade cured with Sigma Quick exhibited the lowest (p ≤ 0.001). The color change after 24 hours was greatest for the bleach shade of G-aenial cured with Bluephase N and least for the A2 shade of Sigma Quick cured with Optilux (p ≤ 0.001). Conclusions: Light curing with polywave light-emitting diode (LED) yielded results between or statistically similar to those of quartz-tungsten-halogen and monowave LED in the microhardness and flexural strength of both A2 and bleach shades of resin composites. However, the brands of light-curing devices showed significant differences in color stability.

A STUDY ON THE ADAPTATION OF LIGHT-CURED AND SELF-CURED GLASS-IONOMER CEMENTS TO TOOTH STRUCTURE (광중합형과 자가중합형 글라스 아이오노머 시멘트의 변연 접합성에 관한 연구)

  • Park, Yil-Yoon;Cho, Young-Gon;Hur, Seung-Myun
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.148-158
    • /
    • 1994
  • The purpose of this study was to compare the adaptation to tooth structure of light - cured glass ionomer cement with that of self -cured glass ionomer cement. In this study, class V cavities were prepared on the buccal surfaces of 10 extracted human premolar teeth, and teeth were randomly assigned 2 groups of 5 teeth each. The cavities of self-curing glass ionomer cement group were restored with the Fuji n. and the cavities of lightcuring glass ionomer cement group were restored with the Fuji II LC. The surfaces of glass ionomer cements were applied with All-Bond 2 adhesive, and cured with visible light. The restored teeth were stored in 100% relative humidity at $37^{\circ}C$ for 24 hours. And then. the roots of the teeth were removed with the tapered fissure bur and the remaining crowns were sectioned occlusogingivally through the center of glass ionomer restorations. Adaptation at tooth-restoration interface was assessed occlusally. axially, and gingivally by scanning electron microscope. The results were as follows : 1. On the occlusal margin, the group of self - curing glass ionomer cement showed closer adaptation to both enamel and dentin than the group of light-curing glass ionomer cement showing 5/lm gap between cement and tooth structure. 2. On the axial wall. the group of light-curing glass ionomer cement showing 5-$7{\mu}m$ gap between cement and dentin showed closer adaptation to dentin than the group of self -curing glass ionomer cement showing 10-$15{\mu}m$ gap between cement and dentin. 3. On the gingival margin, the group of light-curing glass ionomer cement showing 2-$5{\mu}m$ gap between cement and dentin(X 1200) showed closer adaptation to dentin than the group of self-curing glass ionomer cement showing 20pm gap between cement and dentin(X 600). 4. The group of self -curing glass ionomer cement showed closer adaptation on the occlusal margin than on the gingival margin, and the group of light-curing glass ionomer cement showed similar adaptation on both occlusal and gingival margins.

  • PDF

A STUDY ON THE POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN ACCORDING TO VARIOUS LIGHT-CURING METHODS (광조사 방법에 따른 복합레진의 중합수축에 관한 연구)

  • Kwon, Oh-Jin;Kim, Jong-Soo;Kwon, Soon-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.102-109
    • /
    • 2003
  • The purpose of this study was to evaluate the linear polymerization shrinkage(%) and microhardness of composite resin(Z-100, 3M, USA) according to 2-step light curing method. Conventional light curing unit(Curing Light 2500, 3M USA) and 2-step light curing unit(Elipar Highlight, ESPE, Germany) were used as light source. The strain gauge method was used for determination of polymerization shrinkage(%). Samples were divided by 3 groups according to light curing methods (Group I : $450mW/cm^2$, 40sec, Group II : $650mW/cm^2$, 40sec, Group III : $150mW/cm^2$, 10sec & $650mW/cm^2$, 30sec). Preparations of acrylic molds were followed by filling and curing. Strain gauges attached to each sample were connected to a strainmeter. Measurements were recorded at each second for the total of 10 minutes including the periods of light application. And microhardness of each group after 24hours from light irradiation were measured. Obtained data were analyzed statistically using Ore-way ANOVA and/or Scheffe test. The results of the present study can be summarized as follows: 1. Composite resin in acrylic molds showed the initial expansion at the early phase of polymerization. This was followed by the contraction with the rapid increase in volume during the first 60 seconds and gradually diminished as curing process continued. 2. The lowest linear polymerization shrinkage(%) was found in group III followed by group I, II during the measuring periods. 3. Group III using 2-step curing method showed statistically significant reduction of linear polymerization shrinkage(%) compared with group I, II at 1 minute and 10 minutes from light irradiation(p<0.05). 4. The microhardness values of each group not revealed significant difference.

  • PDF

A STUDY OF MONOMER RELEASE FROM PIT AND FISSURE SEALANTS ACCORDING TO VARIOUS LIGHT SOURCES (광원에 따른 수종의 치면열구전색제로부터 용리되는 모노머에 관한 연구)

  • Seo, Hyun-Woo;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.284-292
    • /
    • 2005
  • The aim of this study was to identify and quantify the major or detectable monomers released from any of five commercially-available, light-cured pit and fissure sealants with three different light sources : conventional halogen light curing unit, plasma arc light curing unit and LED curing unit. After curing, specimens were immediately immersed in distilled water for different time intervals. The time related release of monomers were analyzed by high performance liquid chromatography(HPLC). Identification and quantitative analysis of monomers were performed by the comparison of the elution time and the absorption peak height of the eluates with those of the authentic sample. The result of this study can be summarized as follows. 1. Standard solution peaks with retention times of 2.3, 3.2, 5.6, 6.5, 10.4 minutes were identified as BPA, TEGDMA, UDMA, Bis-GMA, Bis-DMA, respectively. 2. None of the chromatograms of the tested sealants displayed peaks with the same retention time as that of the standard solution, except for TEGDMA. 3. The highest release rate of TEGDMA was observed during the 12hr period for all samples and declined thereafter. 4. The elution of TEGDMA from curing with Halogen curing unit for 20 second and LED for 10 second was less than that resulting from curing with Plasma arc for 3 second. 5. TEGDMA was detected at much lower levels in eluates from the Pit & Fissure $Sealant^{TM}$ than other sealants. The elution of TEGDMA from the $Helioseal^{(R)}$ F cured with Halogen light curing unit, the $Concise^{TM}$ cured with Plasma arc curing unit and the $Teethmate^{(R)}$ F-1 cured with LED curing unit were higher than other sealants.

  • PDF

A STUDY ON THE SHEAR BOND STRENGTH OF ESTHETIC RESTORATIVE MATERIALS TO DENTAL AMALGAM (아말감과 심미성 수복재료와의 전단 결합강도에 관한 연구)

  • Jeong, Hye-Jeon;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.129-141
    • /
    • 1995
  • Composite resin and glass-ionomer cement can be used for the purpose of repair of defective amalgam restoration. The purpose of this study was to evaluate of shear bond strength of esthetic restorative materials to dental amalgam. The materials used in this study were Photo Clearfil Bright(light curing composite resin), Clearfil F II(chemical curing composite resin), Fuji II LC(light curing glass-ionomer cement), Fuji II (chemical curing glass-ionomer cement), All-Bond 2(intermediary), and Scotchbond Multi-Purpose (intermediary). A total of 120 acrylic cylinders with amalgam were divided into 8 groups After amalgam condensation, all specimens were stored for 48 hours in water at $37^{\circ}C$ and tested with Instron universal testing machine between amalgam and composite resins and glass-ionomer cements. The data were analyzes statiscally by ANOVA and Duncan test. The following results obtained ; 1. The shear bond strength of bonded composite resin to amalgam was higher than bonded glass-ionomer cement(P<.001). 2. The group 4 had highest shear bond strength with 15.45kgf/$cm^2$ and the group 5 had lowest shear bond strenght with 3.26kgf/$cm^2$(P<.001). 3. In the group 3, 4, 5, 6, the group 3, 4 with All-Bond 2 had higher shear bond strength than the group 5, 6 with Scotch bond MP both in light-curing and in chemical curing. 4. Both in composite resin and glass-ionomer cement, chemical curing materials had higher shear bond stength than light curing materials(P<.001).

  • PDF

Effect of dentin pretreatment and curing mode on the microtensile bond strength of self-adhesive resin cements

  • Youm, Seung-Hyun;Jung, Kyoung-Hwa;Son, Sung-Ae;Kwon, Yong-Hoon;Park, Jeong-Kil
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.317-322
    • /
    • 2015
  • PURPOSE. The aim was to evaluate the effect of curing mode and different dentin surface pretreatment on microtensile bond strength (${\mu}TBS$) of self-adhesive resin cements. MATERIALS AND METHODS. Thirty-six extracted human permanent molars were sectioned horizontally exposing flat dentin surface. The teeth were divided into 12 groups (3 teeth/group) according to the dentin surface pretreatment methods (control, 18% EDTA, 10% Polyacrylic acid) and curing mode (self-curing vs. light-curing) of cement. After pretreatment, composite resin blocks were cemented with the following: (a) G-CEM LinkAce; (b) RelyX U200, followed by either self-curing or light-curing. After storage, the teeth were sectioned and ${\mu}TBS$ test was performed using a microtensile testing machine. The data was statistically analyzed using one-way ANOVA, Student T-test and Scheffe's post-hoc test at P<.05 level. RESULTS. For G-CEM LinkAce cement groups, polyacrylic acid pretreatment showed the highest ${\mu}TBS$ in the self-cured group. In the light-cured group, no significant improvements were observed according to the dentin surface pretreatment. There were no significant differences between curing modes. Both dentin surface pretreatment methods helped to increase the ${\mu}TBS$ of RelyX U200 resin cement significantly and degree of pretreatment effect was similar. No significant differences were found regarding curing modes except control groups. In the comparisons of two self-adhesive resin cements, all groups within the same pretreatment and curing mode were significantly different excluding self-cured control groups. CONCLUSION. Selecting RelyX U200 used in this study and application of dentin surface pretreatment with EDTA and polyacrylic acid might be recommended to enhance the bond strength of cement to dentin.

Strength Characteristics of Light-Weight Cement mind Marine Clay with Foam (경량기포혼합 준설토의 강도특성)

  • 박건태;김주철;윤길림;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.483-490
    • /
    • 2002
  • A massive amount of marine clay produced as dredging of coast and sea bed is often dumped in open sea and filled in pond. The treatment of marine clay demand a large area and make fatal environmental problems for echo system. This research work intend to manufacture a light-weight landfill materials which are produced by mixing the dredged marine clay with various amount cement and foam. An extensive Uniaxial and Triaxial compression test are carried out to investigate the strength characteristics of the light-weight cement mixed marine clay with foam under various test conditions. The results indicated that the required unit weight has been achieved with negligible change after 28days curing time in water. It is also recognized that the compressive strength of light-weight landfill materials linearly decrease with increasing initial water content, and the rate of strength decrease with increasing initial water content in water curing was smaller than that of air curing Futhermore, the rate of strength decreased with increasing initial water content, however, the rate become smaller as cement content increased.

  • PDF

INFLUENCE OF LIGHT SOURCE AND CURING TIME ON SURFACE HARDNESS OF RESIN COMPOSITES (중합 광원과 중합 시간이 복합레진의 표면 경도에 미치는 영향)

  • Bae, Sang-Man;Lee, Kwang-Hee;Kim, Dae-Eup;Ahn, Ho-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.199-206
    • /
    • 2001
  • The purpose of study was to compare the plasma arc light with the halogen light in compostie resin curing. Three composite resin materials(Z-100, 3M, USA; Tetric Ceram, Vivadent, Liechtenstein; SureFil, Dentsply, USA) were filled in the teflon molds (4mm in diameter and 2, 3, 4, 5mm in thickness) and cured with either the conventional low-intensity light curing unit with a halogen lamp (Optilux 360, Demetron, U.S.A.) for duration of 40 seconds or with the high-intensity light curing unit with a plasma arc lamp (Flipo, Lokki, France) for duration of 3, 6, and 9 seconds. The intensity of halogen light was about $370mW/cm^2$ and that of plasma light was about $1,900mW/cm^2$. After one week, the surface hardnesses of both the top and the bottom of the resin samples were measured with a microhardness tester(MXT70, Matsuzawa, Japan). There were significant differences in the hardness between the top and the bottom of the resin samples except the 2mm thickness samples cured by halogen light for 40s or by plasma light for 9s. There was no significant difference between the hardness values of the top surfaces of the thickness groups. The hardness values of the bottom surfaces decreased as the curing time decreased and as the thickness of resin samples increased, and the three kinds of resin composites showed similar patterns. The results suggest that the halogen light for 40 seconds might be able to cure greater depth of resin composites than the plasma light for 3, 6, or 9 seconds.

  • PDF

AN INVESTIGATION ON THE CHARACTERIZATION OF COMPOSITE RESIN POLYMERIZED BY THE USE OF AN ARGON ION LASER (Argon 이온 레이저 중합에 의한 Composite resin의 물성에 관한 연구)

  • Cho, Hyung-Kyung;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.1
    • /
    • pp.69-82
    • /
    • 1992
  • An experimental investigation of the physical properties of light curing composite resin P-50 was performed, in which an argon ion laser beam was irradiated. The physical and mechanical properties of laser polymerized composite resin were determined by measuring the compressive strength, diametral tensile strength, curing depth and microhardness depending upon the experimental conditions such as the laser irradiation time(10sec, 20sec, 30sec) and laser power(300mW, 500mW, 1000mW). These observations were compared with a conventional visible light curing technique. In addition, to evaluate the marginal adaptation, Class V cavity was prepared on the buccal or lingual surface of the extracted premolar and filled with P-50 light curing resin. The test samples were irradiated with both light sources so that the interface between the restoration and the tooth structure were observed under scanning electron microscope. The most of physical and mechanical properties of the laser cured resin showed a remarkable improvement than those treated with the conventional light source, while the observations with the scanning electron microscope provided no significant difference for two polymerized sources. From the results in the experiment it appears that the potential of an argon ion laser is of important value of the use in the polymerization of composite resin.

  • PDF

INFLUENCE OF LOW-INTENSITY CURING AND POLISHING PERIOD ON MARGINAL LEAKAGE OF COMPOSITE (광중합형 레진에서 초기 저광도 광중합 및 연마 시기가 변연부 미세 누출에 미치는 영향)

  • Lee, Sang-Hoon;Jeong, Il-Young;Roh, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.85-90
    • /
    • 2000
  • For more esthetic treatments the use of composite in molar areas are increasing. But polymerzation shrinkage that cause marginal leakage and cuspal deflection has been the problems of composites. The purpose of this study is to compare the effect of low intensity curing and polishing period on marginal leakage. Cavities were prepared on the buccal or lingual surface of forty five sound extracted human teeth and etching, application of bonding agent and filling of composite was done. Group 1 was light cured at intensity of 600$mW/cm^2$ for 41 seconds and polished. Group 2 was light cured at intensity of 300$mW/cm^2$ for 2 seconds and polished and after polishing it was light cured for 40 seconds at 600$mW/cm^2$. Group 3 was light cured at intensity of 300$mW/cm^2$ for 2 seconds and waited for 5 minutes and after curing at 600$mW/cm^2$ for 40 seconds polishing was done. The specimens were thermocycled at $5^{\circ}C$ and $55^{\circ}C$ for 1000 cycles and immersed in 2% methylene blue solution for 24 hours. Composite-tooth interface was examined under stereobinocular microscope for dye penetration. The results were as follows : 1. Group which were cured at low intensity and polished after curing at high intensity showed less marginal leakage than group which were cured at high intensity for 41 seconds(p<0.05). 2. Marginal leakage between group which were cured at low intensity and polished immediately and group which were cured at high intensity for 41 second were not significantly different. Light curing at low intensity can reduce marginal leakage but polishing immediately after curing at low intensity for short time can affect marginal leakage.

  • PDF