• 제목/요약/키워드: Light guide film

검색결과 40건 처리시간 0.045초

LCD 백라이트용 렌티큘라 렌즈필름의 광구조 최적화에 관한 연구 (Study on the Optimization of the Optical Structure of Lenticular-Lens Films for LCD Backlight Applications)

  • 서재석;고재현
    • 한국광학회지
    • /
    • 제22권6호
    • /
    • pp.247-255
    • /
    • 2011
  • 최근 확산기능과 집광기능을 동시에 가지는 복합필름에 대한 관심이 커지고 있다. 본 시뮬레이션연구에서는 복합필름으로 주목 받고 있는 렌티큘라 렌즈필름의 광학구조를 최적화하고 이를 기존의 백라이트가 보이는 광학 성능과 비교하였다. 보다 정확한 시뮬레이션의 수행을 위해 시험적으로 제작된 렌티큘라 렌즈필름이 보이는 휘도의 시야각 분포를 측정하였고 이 실험 결과를 재현할 수 있는 시뮬레이션 조건, 특히 도광판의 산란 패턴이 가지는 쌍방향 산란분포함수의 수학적 모델을 확보하였다. 이에 근거해서 시뮬레이션을 수행한 결과 렌티큘라 렌즈의 종횡비가 1.25, 굴절률이 1.65인 조건에서 이 필름의 집광성능이 최대가 됨을 확인하였다. 최적화된 렌티큘라 렌즈필름이 1매 포함된 백라이트 모델은 프리즘필름이 1매 포함된 기존의 백라이트에 비해 집광성능이 현저히 떨어졌지만 렌티큘라 렌즈필름 2매를 직교해서 적용하게 되면 프리즘필름 1매가 가지는 집광 성능과 비슷한 성능을 달성함과 동시에 부드러운 시야각 특성의 구현에 기여할 수 있다는 점을 확인하였다.

Film Image Transfer System (FITS): An Efficient Method for Proper Positioning of Orthodontic Mini-implants

  • Go, Taek-Su;Kim, Seong-Hun;Nelson, Gerald
    • Journal of Korean Dental Science
    • /
    • 제4권1호
    • /
    • pp.20-25
    • /
    • 2011
  • Purpose: To describe the newly developed Film image transfer system (FITS) for proper positioning of the orthodontic mini-implant in the narrow interdental space and considerations for better application. Materials and Methods: A patient who was planning to have orthodontic mini-implant treatment on the posterior maxilla was recruited to assess the feasibility of FITS. Dental radiographic film and bite record was taken. And then the film image was transferred on the photographic emulsion coated model using transfer light through film projector (enlarger). After exposing the photo emulsion coating on the model, the image was developed with a working solution for a paper developer and fixed. The surgical guide for the mini-implant was fabricated from the transported FITS data. Results: The completed surgical guide was easily placed intraorally, and allowed a simple and rapid placement of the mini-implant. The site of the implant placement was accurate as planned position. Conclusion: In the reported case, The FITS technique represents an effort to minimize risk to the patient and produce consistently good results based upon accurate information about the anatomy of the implant site.

DSF의 성형조건 변화가 전사성에 미치는 영향에 관한 연구 (An study of transcription by processing conditions of Direct Surface Forming Method)

  • 조광환;윤경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.221-224
    • /
    • 2003
  • Recently, the market share of the thin-film-transistor liquid-crystalline-display (TFT-LCD) is growing rapidly in display device market. The backlight unit is used as a light source of TFT-LCD module. A light-guide is one of several important components of backlight unit. The manufacturing technology and optical system design of the light guide is very sensitive to quality and cost of the TFT-LCD module. In the present study a new manufacturing method which is called as direct surface forming(DSF) has been tested under various conditions. The result of this test, V-groove pattern shows different shapes depends on the temperature of mold surface, contact time of mold and depth of V-groove.

  • PDF

LCD backlight unit의 고분자 산란형 도광판에 관한 연구 (A study on the LCD backlight unit using polymer)

  • 정일용;박우상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.578-581
    • /
    • 1999
  • Dot pattern print methods composed of a diffusion film and two prism sheets, have been generally used for backlighting systems of LCDs. However, this methods require complex structures and show high power consumption and optical loss. To improve these disadvantages of conventional backlight units, light guides using highly scattering optical transmissions (HSOT) polymer as scatters, have been introduced. In this study we analyzed multiple scattering effect in light guide by means of Monte carlo simulation based on Mie scattering theory and ray tracing method. As a result it was revealed that scattering intensity depends on the size of scatters. On the other hands, it was shown that scattering efficiency depends on the wavelength of fluorescent lamp as well as the size of scatters.

  • PDF

Fabrication of micro injection mold with modified LIGA micro-lens pattern and its application to LCD-BLU

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.165-169
    • /
    • 2007
  • The light guide plate (LGP) of LCD-BLU (Liquid Crystal Display-Back Light Unit) is usually manufactured by forming numerous dots by etching process. However, the surface of those etched dots of LGP is very rough due to the characteristics of etching process, so that its light loss is relatively high due to the dispersion of light. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched-dot patterned LGP, micro-lens pattern was tested to investigate the possibility of replacing etched pattern in the present study. The micro-lens pattern fabricated by the modified LiGA with thermal reflow process was applied to the optical design of LGP. The attention was paid to the effects of different optical pattern type (i.e. etched dot, micro-lens). Finally, the micro-lens patterned LGP showed better optical qualities than the one made by the etched-dot patterned LGP in luminance.

박막적층 비대칭 Extruded-closed-polygon 형 BLU 도광판의 제작 및 평가 (Fabrication and characterization of thin film asymmetric extrudedclosed-polygon type BLU light guide plate)

  • 김병권;구경완;한창석;오동철;이재각;배창환
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2009년도 창립 20주년기념 특별학술발표회
    • /
    • pp.103-104
    • /
    • 2009
  • We proposed the laminate thin film asymmetric Extruded-closed-polygon diffusion pattern that was able to improve the performance of back light unit. Developed a pattern of brightness and bright line, half-power angle attribute the improved performance in the uniform, and through the formation of a thin film stackable diffusion layer 970% improved perpendicularity brightness, and 580% improved horizontality brightness.

  • PDF

음각, 양각 광학패턴 적용 휴대폰용 도광판 금형 제작 및 광특성 연구 (Replication of concave and convex microlens array of light guide plate for liquid crystal display in injection molding)

  • 황철진;김종선;강정진;홍석관;윤경환
    • Design & Manufacturing
    • /
    • 제2권2호
    • /
    • pp.29-32
    • /
    • 2008
  • A back light unit (BLU) is a key module of a thin film transistor liquid crystal display (TFT-LCD), frequently utilized in various mobile displays. In this study, we experimentally characterize transcription and optical properties of concave and convex microlens arrays (MLAs) of light guide plate (LGP) fabricated by injection molding with polycarbonate as a LGP substrate material. Nickel mold inserts were manufactured by electroforming on the MLA which was fabricated by the thermal reflow of photoresist microstructures patterned by UV-photolithography. For the case of convex microlens, the height of replicated microlens was less than that of the mold insert while maintaining almost the same microlens diameter of the mold insert as the location of the microlens is far from the gate. In contrast, for the concave microlens, the diameter of replicated microlens was larger than that of mold insert, while showing almost the same microlens height as the mold insert. From the optical examination of replicated convex and concave MLAs, it was found that a higher luminance of the LGP was achieved by the concave MLAs compared to the convex MLAs (about 30% enhancement in this case)due to the utilization of a larger amount of light provided by the light sources.

  • PDF

Diffraction Efficiency Analysis of Silver Halide Film for Color Holography Recording

  • Park, Sung Chul;Kim, Sang Il;Son, Kwang Chul;Kwon, Soon Chul;Lee, Seung Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제7권2호
    • /
    • pp.16-27
    • /
    • 2015
  • Holography technology which was developed by Dennis Gabor (1900~1979) in 1948 is a technology to record wave planes of actual 3D objects. It is known as the only technology which can express 3D information most perfectly close to human-friendly. Holography technology is widely used in advertisement, architecture and arts as well as science technology areas. Especially, digital holographic print which is an applied area is greatly used in military map, architecture map and cultural asset restoration by printing and reproducing 3D information. Holography is realized by recording and reproducing the amplitude and phase information on high resolution film using coherent light like laser. Recording materials for digital holographic printer are silver halide, photoresist and photopolymer. Because the materials have different diffraction efficiency according to film characteristics of each manufacturer, appropriate guide lines should be suggested through efficiency analysis of each film. This paper suggests appropriate guide lines through the diffraction efficiency measurement of silver halide which is a holographic printer recording medium. And the objective of this study is to suggest appropriate guide lines through diffraction efficiency analysis of Ultimate 08-C and PFG-03C which are commercially used. The experiment was prepared by self-diffraction efficiency system which measures the strength with the defector by penetrating RGB recording medium and concentrating diffracted beams through collimating lens. The experiment showed Geola's PFG-03C which is a silver halide for full color has price/performance advantage in optical hologram recording, but recording angles and reproduction angles are irregular for digital holographic printer recording. Ultimate's Ultimate08-C for full color shows its diffraction efficiency is relatively stable and high according to recording angles and laser wavelength.

유기 발광 다이오드의 신뢰성 평가기준 (Reliability Assessment Criteria of Organic Light Emitting Diode(OLED))

  • 홍원식;송병석;정해성;임재학
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제9권2호
    • /
    • pp.131-148
    • /
    • 2009
  • An organic light emitting diode (OLED), also light emitting polymer (LEP) and organic electro luminescence (OEL), is any light emitting diode (LED) whose emissive electroluminescent layer is composed of a film of organic compounds. The layer usually contains a polymer substance that allows suitable organic compounds to be deposited. They are deposited in rows and columns onto a flat carrier by a simple "printing" process. The resulting matrix of pixels can emit light of different colors. Such systems can be used in television screens, computer displays, small, portable system screens such as cell phones and PDAs, advertising, information and indication. OLEDs can also be used in light sources for general space illumination, and large-area light-emitting elements. In this paper, we develop the general guide line of the accelerated life test for assuring B10 life of AMOLED(Active Matrix Organic Light Emitting Diode) and PMOLED(Passive Matrix Organic Light Emitting Diode) which are widely used for display monitor less than 115 mm.

  • PDF

Surface Plasmon Effect in Hot Electron Based Photovoltaic Devices

  • 이영근;정찬호;박종혁;박정영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.162-162
    • /
    • 2011
  • Nanometer-sized noble metals can trap and guide sunlight for enhanced absorption of light based on surface plasmon that is beneficial for generation of hot electron flows. A pulse of high kinetic energy electrons (1-3 eV), or hot electrons, in metals can be generated after surface exposure to external energy, such as in the absorption of light or in exothermic chemical processes. These energetic electrons are not at thermal equilibrium with the metal atoms. It is highly probable that the correlation between hot electron generation and surface plasmon can offer a new guide for energy conversion systems [1-3]. We show that hot electron flow is generated on the modified gold thin film (<10 nm) of metal-semiconductor (TiO2) Schottky diodes by photon absorption, which is amplified by localized surface plasmon resonance. The short-circuit photocurrent obtained with low energy photons (lower than bandgap of TiO2, ~3.1-3.2 eV) is consistent with Fowler's law, confirming the presence of hot electron flows. The morphology of the metal thin film was modified to a connected gold island structure after heating to 120, 160, 200, and 240$^{\circ}C$. These connected island structures exhibit both a significant increase in hot electron flow and a localized surface plasmon with the peak energy at 550-570 nm, which was separately characterized with UV-Vis [4]. The result indicates a strong correlation between the hot electron flow and localized surface plasmon resonance with possible application in hot electron based solar cells and photodetectors.

  • PDF