• Title/Summary/Keyword: Light field display

Search Result 190, Processing Time 0.018 seconds

HELIUM3D: A Laser-scanning Head-tracked Autostereoscopic Display

  • Brar, Rajwinder Singh;Surman, Phil;Sexton, Ian;Hopf, Klaus
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.100-108
    • /
    • 2010
  • A multi-user autostereoscopic display based on laser scanning is described in this paper. It does not require the wearing of special glasses; it can provide 3D to several viewers who have a large degree of freedom of movement; and it requires the display of only a minimum amount of information. The display operates by providing regions in the viewing field, referred to as "exit pupils," which follow the positions of the viewers' eyes under the control of a multi-user head tracker. The display incorporates an RGB laser illumination source that illuminates a light engine. The light directions are controlled by a spatial light modulator, and a front screen assembly incorporates a novel Gabor superlens. Its operating principle is explained in this paper, as is the construction of three iterations of the display. Finally, a method of developing the display into one that is suitable for television applications is described.

Measurement and Analysis of Arousal While Experiencing Light-Field Display Device

  • Choi, Hyun-Jun;Kim, Noo-Ree;Park, Hyun-Rin
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.188-193
    • /
    • 2020
  • In this paper, we examine whether the 3D image experience through a light-field display device showed the difference in the arousal of the user compared with the 2D image experience. For our experiment, the Looking GlassTM (LG) was used as a lightfield display device that provided 3D images, and 2D images were provided by digital and printed images. The subject's facial behavior during each media experience was recorded for analysis and the degree of arousal was measured by FaceReaderTM. As a result, the first image presented in the first order among the three kinds of images showed that there was a statistical difference in the degree of arousal between the three media. However, no significant differences were found between the three media in the other images. This may be because the arousal did not increase from the experience of the second image through the LG, owing to habituation. In conclusion, the 3D imaging experience may appear in the beginning, but does not continue.

Active-Matrix Cathodes though Integration of Amorphous Silicon Thin-Film Transistor with triode -and Diode-Type field Emitters

  • Song, Yoon-Ho;Cho, Young-Rae;Hwang, Chi-Sun;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.72-77
    • /
    • 2001
  • Amorphous silicon thin-film transistors (a-Si TFTs) were incorporated into Mo-tip-based triode-type field emitters and diode-type ones of carbon nanotubes for an active-matrix cathode (AMC) plate of field emission displays. Also, we developed a novel surface-treatment process for the Mo-tip fabrication, which gleatly enhanced in the stability of field emission. The field emission currents of AMC plates on glass substrate were well controlled by the gate bias of a-Si TFTs. Active-matrix field emission displays (AMFEDs) with these AMC plates were demonstrated in a vacuum chamber, showing low-voltage matrix addressing, good stability and reliability of field emission, and highly uniform light emissions from the anode plate with phosphors. The optimum design of AMFEDs including a-Si TFTs and a new light shield/focusing grid is discussed.

  • PDF

Enhanced Electron Emission of Carbon Nanotube Arrays Grown Using the Resist-Protection-assisted Positioning Technique

  • Ryu, Je-Hwang;Kim, Ki-Seo;Yu, Yi-Yin;Lee, Chang-Seok;Lee, Yi-Sang;Jang, Jin;Park, Kyu-Chang
    • Journal of Information Display
    • /
    • v.9 no.4
    • /
    • pp.30-34
    • /
    • 2008
  • Field emitter arrays (FEAs) were developed using carbon nanotubes (CNTs) as electron emission sources. The CNTs were grown using a selective-positioning technique with a resist-protection layer. The light emission properties were studied through the electron emission of the CNTs on patterned islands, which were modulated with island diameter and spacing. The electron emission of CNT arrays with $5{\mu}m$ diameters and $10{\mu}m$ heights increased with increased spacing (from $10{\mu}m$ to $40{\mu}m$). The electron emission current of the $40-{\mu}m$-island-spacing sample showed a current density of 1.33 mA/$cm^2$ at E = 11 V/${\mu}m$, and a turn-on field of 7 V/${\mu}m$ at $1{\mu}A$ emission current. Uniform electron emission current and light emission were achieved with $40{\mu}m$ island spacing and $5{\mu}m$ island diameter.

A Study of Visual Field for Industrial Safety (산업 안전을 위한 시각영역에 관한 연구)

  • 윤훈용;심정훈
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.3
    • /
    • pp.9-15
    • /
    • 2002
  • Due to the inconsiderateness of human capability and inappropriate arrangement of display and control unit at the industrial site, the human error leads to a various accidents. This study was performed to investigate the visual range at the eye field and stationary field at the various angles with three different visual stimuli of alphabetic character, color slip and light-emitting diode. Three kinds of various alphabetic characters depending on length and breadth ratio (1:1, 3:5, 5:3) and three different colors (red, yellow, green) were used for the stimuli. Twenty-five subjects (11 males and 14 females) participated for this study. The results showed that female had wider visual range than male at the eye field, however no significant difference was found at the stationary field. The light-emitting diode had a widest visual range then color slip and characters are in order at the eye field and stationary field. For the character stimulus, the widest visual range was shown at length and breadth ratio of 1:1. The other ratios (3:5 and 5:3) showed no significant difference. The color of red had a widest visual range on the light-emitting diode, however, the color of yellow showed a widest visual range on the just color slip at the eye field. The result of this study would be valuable in applying to the design of visual display and the panel layout of control and displays in the industrial site.

Optical Modeling for Polarization-dependent Optical Power Dissipation of Thin-film Organic Solar Cells at Oblique Incidence

  • Kim, Jungho;Jung, Sungyeop;Jeong, Inkyung
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.6-12
    • /
    • 2012
  • We present the optical models and calculation results of thin-film organic solar cells (OSCs) at oblique incidence of light, using the transfer matrix method. The simple expression for the optical power dissipation is derived at oblique incidence for s- and p-polarized light. The spatial distribution of the electric field intensity, the optical power density, and the optical power dissipation are calculated in both s- and p-polarized light with respect to the incidence angle. We identify how the light absorption efficiency for p-polarized light becomes relatively larger than that for s-polarized light as the incidence angle increases.

Verification of Optical Wireless Communication Functionality in Micro-LED Display Light Source Integrated with Field-effect Transistor (전계형 스위칭 소자가 집적된 마이크로 LED 디스플레이 광원의 광 무선 통신 기능 검증)

  • Jong-In Kim;Hyun-Sun Park;Pan-Ki Min;Myung-Jin Go;Young-Woo Kim;Jung-Hyun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.1-5
    • /
    • 2023
  • In the past, display devices have undergone many changes, such as plasma TVs and LCDs, and have continued to develop. Recently, new display technologies, such as Organic Light Emitting Diode displays and Inorganic Light Emitting Diode displays, have been developed. Among them, Micro LED displays have the potential to improve performance more than LCDs and OLEDs, but a lot of effort and time are needed until the mass production technology (transfer and bonding) of Micro LED displays is developed. We have developed a new Micro LED display light source that can be produced using existing transfer and bonding process technologies to enable faster commercialization of Micro LED in the industry. This light source is TFT deposition on LED. TFT deposition on LED has the advantage of being able to produce displays using existing process technology, making early commercialization of display application products possible. In this study, we applied the Active Driving method to verify the performance of TFT deposition on LED as a display to determine its commercialization potential. Additionally, to facilitate faster application of Micro LED in the industry, we applied TFT deposition on LED to Optical Wireless Communication systems, which are widely used in application service areas such as safety/security and sensors, to verify its communication performance. The experimental results confirmed that TFT deposition on LED is not only capable of AM driving but can also be applied to OWC systems.

  • PDF

Fabrication of Scattering Layer for Light Extraction Efficiency of OLEDs (RIE 공정을 이용한 유기발광다이오드의 광 산란층 제작)

  • Bae, Eun Jeong;Jang, Eun Bi;Choi, Geun Su;Seo, Ga Eun;Jang, Seung Mi;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.95-102
    • /
    • 2022
  • Since the organic light-emitting diodes (OLEDs) have been widely investigated as next-generation displays, it has been successfully commercialized as a flexible and rollable display. However, there is still wide room and demand to improve the device characteristics such as power efficiency and lifetime. To solve this issue, there has been a wide research effort, and among them, the internal and the external light extraction techniques have been attracted in this research field by its fascinating characteristic of material independence. In this study, a micro-nano composite structured external light extraction layer was demonstrated. A reactive ion etching (RIE) process was performed on the surfaces of hexagonally packed hemisphere micro-lens array (MLA) and randomly distributed sphere diffusing films to form micro-nano composite structures. Random nanostructures of different sizes were fabricated by controlling the processing time of the O2 / CHF3 plasma. The fabricated device using a micro-nano composite external light extraction layer showed 1.38X improved external quantum efficiency compared to the reference device. The results prove that the external light extraction efficiency is improved by applying the micro-nano composite structure on conventional MLA fabricated through a simple process.

Semi-analytical Numerical Analysis of the Core-size and Electric-field Intensity Dependency of the Light Emission Wavelength of CdSe/ZnS Quantum Dots

  • Lee, Honyeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.11-17
    • /
    • 2021
  • I performed a semi-analytical numerical analysis of the effects of core size and electric field intensity on the light emission wavelength of CdSe/ZnS quantum dots (QDs). The analysis used a quantum mechanical approach; I solved the Schrödinger equation describing the electron-hole pairs of QDs. The numerical solutions are described using a basis set composed of the eigenstates of the Schrödinger equation; they are thus equivalent to analytical solutions. This semi-analytical numerical method made it simple and reliable to evaluate the dependency of QD characteristics on the QD core size and electric field intensity. As the QD core diameter changed from 9.9 to 2.5 nm, the light emission wavelength of CdSe core-only QDs varied from 262.9 to 643.8 nm, and that of CdSe/ZnS core/shell QDs from 279.9 to 697.2 nm. On application of an electric field of 8 × 105 V/cm, the emission wavelengths of green-emitting CdSe and CdSe/ZnS QDs increased by 7.7 and 3.8 nm, respectively. This semi-analytical numerical analysis will aid the choice of QD size and material, and promote the development of improved QD light-emitting devices.

Simulation Study of an e-Beam Addressed Liquid Crystal Display for Projection

  • Zhou, Fushan;Yang, Deng-Ke;Molitor, R.J.
    • Journal of Information Display
    • /
    • v.3 no.4
    • /
    • pp.8-12
    • /
    • 2002
  • We have carried out a simulation study on an e-beam addressed liquid crystal projection display in which the liquid crystal is switched by the electric field of the charge, produced by an electron beam, on the surface of the display. We calculated the electric field produced by the surface charge, the liquid crystal director configuration and the profile of the transmitted light. We studied the factors affecting the resolution of the display and the effect of pretilt angle on the performance of the display. The e-beam addressed liquid crystal projection display potentially has the advantages of high resolution and high brightness.