Browse > Article

Semi-analytical Numerical Analysis of the Core-size and Electric-field Intensity Dependency of the Light Emission Wavelength of CdSe/ZnS Quantum Dots  

Lee, Honyeon (Department of Electronics & Information Engineering, Soonchunhyang University)
Publication Information
Journal of the Semiconductor & Display Technology / v.20, no.3, 2021 , pp. 11-17 More about this Journal
Abstract
I performed a semi-analytical numerical analysis of the effects of core size and electric field intensity on the light emission wavelength of CdSe/ZnS quantum dots (QDs). The analysis used a quantum mechanical approach; I solved the Schrödinger equation describing the electron-hole pairs of QDs. The numerical solutions are described using a basis set composed of the eigenstates of the Schrödinger equation; they are thus equivalent to analytical solutions. This semi-analytical numerical method made it simple and reliable to evaluate the dependency of QD characteristics on the QD core size and electric field intensity. As the QD core diameter changed from 9.9 to 2.5 nm, the light emission wavelength of CdSe core-only QDs varied from 262.9 to 643.8 nm, and that of CdSe/ZnS core/shell QDs from 279.9 to 697.2 nm. On application of an electric field of 8 × 105 V/cm, the emission wavelengths of green-emitting CdSe and CdSe/ZnS QDs increased by 7.7 and 3.8 nm, respectively. This semi-analytical numerical analysis will aid the choice of QD size and material, and promote the development of improved QD light-emitting devices.
Keywords
Quantum Dots; Core Size; Electric Field Intensity; Emission Wavelength;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, V. Bulovic, "Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum", Nano Lett., Vol. 9, pp. 2532-2536, 2009.   DOI
2 E. Lee, C.K. Wang, C. Hotz, J. Hartlove, J. Yurek, H. Daniels, Z. Luo, and D. Zehnder, ""Greener" Quantum-Dot Enabled LCDs with BT.2020 Color Gamut", in: SID Symp. Dig. Tech. Pap., Wiley, pp. 549-551, 2016
3 M.K. Choi, J. Yang, T. Hyeon, and D.-H. Kim, "Flexible quantum dot light-emitting diodes for next-generation displays", Npj Flex. Electron., Vol. 2, 10, 2018.
4 Y. Sun, Y. Jiang, X.W. Sun, S. Zhang, and S. Chen, "Beyond OLED: Efficient Quantum Dot Light-Emitting Diodes for Display and Lighting Application", Chem. Rec., Vol. 19, pp. 1729-1752, 2019.   DOI
5 L. Zhang, B. Lv, H. Yang, R. Xu, X. Wang, M. Xiao, Y. Cui, and J. Zhang, "Quantum-confined stark effect in the ensemble of phase-pure CdSe/CdS quantum dots", Nanoscale, Vol. 11, pp. 12619-12625, 2019.   DOI
6 N. Sato, and S. Iwata, "Application of finite-element method to the two-dimensional Schrodinger equation", J. Comput. Chem., Vol. 9, pp. 222-231, 1988.   DOI
7 S. Baskoutas, and A.F. Terzis, "Size-dependent band gap of colloidal quantum dots", J. Appl. Phys., Vol. 99, 013708, 2006.   DOI
8 D.J. Kim, and H.N. Lee, "Improving the charge balance and performance of CdSe/ZnS quantum-dot light-emitting diodes with a sputtered zinc-tin-oxide electron-transport layer and a thermally evaporated tungsten-oxide charge-restricting layer", Jpn. J. Appl. Phys., Vol. 58, 106502, 2019.   DOI
9 A. Samanta, Z. Deng, and Y. Liu, "Aqueous synthesis of glutathione-capped CdTe/CdS/ZnS and CdTe/CdSe/ZnScore/shell/shell nanocrystal heterostructures", Langmuir, Vol. 28, pp. 8205-8215, 2012.   DOI
10 E.J. Tyrrell, and J.M. Smith, "Effective mass modeling of excitons in type-II quantum dot heterostructures", Phys. Rev. B - Condens. Matter Mater. Phys., Vol. 84, 165238, 2011.
11 I. Wolfram Research, Mathematica, (2016). https://www.wolfram.com/mathematica/.
12 S.-J. Zou, Y. Shen, F.-M. Xie, J.-D. Chen, Y.-Q. Li, J.-X. Tang, "Recent advances in organic light-emitting diodes: toward smart lighting and displays", Mater. Chem. Front., Vol. 4. pp. 788-820, 2020.   DOI
13 H.-W. Chen, J.-H. Lee, B.-Y. Lin, S. Chen, S.-T. Wu, "Liquid crystal display and organic light-emitting diode display: present status and future perspectives", Light Sci. Appl., Vol. 7, 17168, 2018.   DOI
14 J. Chen, V. Hardev, and J. Yurek, "Quantum-Dot Displays: Giving LCDs a Competitive Edge through Color", Inf. Disp., Vol. 29, pp. 12-17, 2013.
15 Z.B. Wang, J.Y. Zhang, Y.P. Cui, and Y.H. Ye, "Effect of electrical field on colloidal CdSe/ZnS quantum dots", Chinese Phys. Lett., Vol. 25, pp. 4435-4438, 2008.   DOI
16 H. Moon, C. Lee, W. Lee, J. Kim, and H. Chae, "Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications", Adv. Mater., Vol. 31, 1804294, 2019.   DOI
17 S.C. Hsu, L.A. Ke, H.C. Lin, T.M. Chen, H.Y. Lin, Y.Z. Chen, Y.L. Chueh, H.C. Kuo, C.C. Lin, "Fabrication of a Highly Stable White Light-Emitting Diode with Multiple-Layer Colloidal Quantum Dots", IEEE J. Sel. Top. Quantum Electron., Vol. 23, 2000409, 2017.
18 X. Han, G. Zhang, B. Li, C. Yang, W. Guo, X. Bai, P. Huang, R. Chen, C. Qin, J. Hu, Y. Ma, H. Zhong, L. Xiao, and S. Jia, "Blinking Mechanisms and Intrinsic Quantum-Confined Stark Effect in Single Methylammonium Lead Bromide Perovskite Quantum Dots", Small, Vol. 16, 2005435, 2020.   DOI
19 X. Dai, Y. Deng, X. Peng, and Y. Jin, "Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization", Adv. Mater., Vol. 29, 1607022, 2017.   DOI
20 W. Mei, Z. Zhang, A. Zhang, D. Li, X. Zhang, H. Wang, Z. Chen, Y. Li, X. Li, and X. Xu, "High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach", Nano Res., Vol. 13, pp. 2485-2491, 2020.   DOI
21 Q. Yuan, T. Wang, P. Yu, H. Zhang, H. Zhang, W. Ji, "A review on the electroluminescence properties of quantum-dot light-emitting diodes", Org. Electron., Vol. 90, 106086, 2021.   DOI
22 Y. Shirasaki, G.J. Supran, M.G. Bawendi, and V. Bulovic, "Emergence of colloidal quantum-dot light-emitting technologies", Nat. Photonics, Vol. 7, pp. 13-23, 2013.   DOI
23 T.E. Simos, and P.S. Williams, "A finite-difference method for the numerical solution of the Schrodinger equation", J. Comput. Appl. Math., Vol. 79, pp. 189-205, 1997.   DOI
24 E.O. Chukwuocha, M.C. Onyeaju, and T.S.T. Harry, "Theoretical Studies on the Effect of Confinement on Quantum Dots Using the Brus Equation", World J. Condens. Matter Phys., Vol. 02, pp. 96-100, 2012.   DOI
25 B.O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi, "(CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites", J. Phys. Chem. B., Vol. 101, pp. 9463-9475, 1997.   DOI
26 M. Lu, J. Guo, S. Sun, P. Lu, X. Zhang, Z. Shi, W.W. Yu, Y. Zhang, "Surface ligand engineering-assisted CsPbI3 quantum dots enable bright and efficient red light-emitting diodes with a top-emitting structure", Chem. Eng. J., Vol. 404, 126563, 2021.   DOI
27 R. Schmied, Using Mathematica for Quantum Mechanics, 1st ed., Springer Singapore, Singapore, 2020.