• 제목/요약/키워드: Light curing time

검색결과 148건 처리시간 0.035초

가변 광도에 따른 복합레진의 기계적 물성 및 변연누출도 변화 (MECHANICAL PROPERTIES AND MICROLEAKAGE OF COMPOSITE RESIN MATERIALS CURED BY VARIABLE LIGHT INTENSITIES)

  • 한승렬;민경산;신동훈
    • Restorative Dentistry and Endodontics
    • /
    • 제28권2호
    • /
    • pp.134-145
    • /
    • 2003
  • Mechanical properties and microleakage of two composites [conventional hybrid type DenFil (VERICOM Co., Anyang, Korea) / micro matrix hybrid type Esthet X (Dentsply Caulk, Milford, DE, U.S.A.)] were evaluated to assess whether variable light intensity curing is better than conventional curing technique. Curing was done for 40 seconds in two ways of 2 step soft-start technique and 5 step ramping technique. Three kinds of light intensities of 50, 100, $200{\;}mW/\textrm{cm}^2$ were initially used for 10, 20, 30 seconds each and the maximum intensity of $600 {\;}mW/\textrm{cm}^2$ was used for the rest of curing time in a soft-start curing tech nique. In a ramping technique, curing was done with the same initial intensities and the light intensity was increased 5 times with the same rate to the maximum intensity of $600{\;}mW/\textrm{cm}^2$. After determining conditions that showed no different mechanical properties with conventional technique, Esthet X composite was filled in a class V cavity, which dimension was $4{\times}3{\times}1.5{\;}mm$ and cured under those conditions. Microleakage was evaluated in two ways of dye penetration and maximum gap estimation through SEM observation. ANOVA and Spearman's rho test were used to confirm any statistical significance among groups. The results were as follows : 1 Several curing conditions of variable light intensities resulted in the similar mechanical properties with a conventional continuous curing technique, except conditions that start curing with an initial light intensity of $50{\;}mW/\textrm{cm}^2$. 2. Conventional and ramping techniques were better than soft-start technique in mechanical properties of microhardness and compressive strength. 3. Soft-start group that started curing with an initial light intensity of $100{\;}mW/\textrm{cm}^2$ for 10 seconds showed the least dye penetration. Soft-start group that started curing with an initial light intensity of $200{\;}mW/\textrm{cm}^2$ for 10 seconds showed the smallest marginal gap, if there was no difference among groups. 4. Soft-start technique resulted in better dye-proof margin than conventional technique(p=0.014) and ramping technique(p = 0.002). 5. There was a very low relationship(p=0.157) between the methods of dye penetration and marginal gap determination through SEM evaluation. From the results of this study, it was revealed that ramping technique would be better than conventional technique in mechanical properties, however, soft-start technique might be better than conventional one in microleakage. It was concluded that much endeavor should be made to find out the curing conditions, which have advantages of both aspects or to solve these kinds of problems through a novel idea of polymerization.

가시광선 중합기의 조사강도 감소에 대한 조사시간 증가의 보상효과 (COMPENSATION EFFECT OF EXPOSURE TIME INCREASE TO DECREASED LIGHT INTENSITY OF VISIBLE-LIGHT CURING UNIT)

  • 윤태원;이창섭;이상호
    • 대한소아치과학회지
    • /
    • 제24권1호
    • /
    • pp.325-336
    • /
    • 1997
  • The purpose of this study was to evaluate the compensation effect of exposure duration increase to decreased light intensity of visible-light curing unit. The specimen with 2mm thickness was made of Restorative $Z-100^{TM}$ (A2 shade, 3M Dental Products, U.S.A.) and cured with $Optilux^{TM}$ (Demetron Research Co. U.S.A.). The light intensity was controlled to 420 $mW/cm^2$, 540 $mW/cm^2$, 630 $mW/cm^2$ and curing time, also, controlled to 40, 60, 80 seconds. Cured specimen was stored in a light-proof container for 24 hours to post-irradation was completed. Microhardness of top and bottom surface of specimen were measured to evaluate the depth of cure. The obtained results were as follows: 1. The microhardness of top and bottom surface of the composite resin specimen was increased significantly as light intensity and exposure time was increased (P<0.01). 2. Light intensity was more correlated with bottom microhardness(${\gamma}{\geq}$0.438) than top microhardness(${\gamma}{\geq}$0.213), and exposure time was more correlated with top microhardness (${\gamma}{\geq}$0.424) than bottom microhardness(${\gamma}{\geq}$0.335). 3. The regressive equation was obtained in this study as follows : $H=0.07{\times}D+0.012{\times}I+76$ (H : Microhardness(KHN), D : Exposure time, I : Light intensity)

  • PDF

LED용 실리콘 봉지재의 경화방법이 신뢰성에 미치는 영향 (Effect of Curing Method on the Reliability of Silicone Encapsulant for Light Emitting Diode)

  • 김완호;장민석;강영래;김기현;송상빈;여인선;김재필
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.844-848
    • /
    • 2012
  • Encapsulant curing in terms of convection oven leads to thermal induced stress due to nonuniform thermal conductivity in LED package. We have adopted infrared (IR) light for silicone curing in order to release the stress. The light uniformity irradiated on an encapsulant surface is confirmed to be uniform by optical simulation. Shear strength of die paste using IR compared to convection oven is increased 19.2% at the same curing time, which indicates curing time can be shortened. The indentation depth difference between center and edge of silicone encapsulant in terms of convection oven and IR are 14.8% and 3.4%, respectively. Curing by IR also shows 2.3% better radiant flux persistency rate of LED at $85^{\circ}C$ after 1,000 h reliability test compared to convection curing.

경량기포혼합 준설토의 강도특성 (Strength Characteristics of Light-Weight Cement mind Marine Clay with Foam)

  • 박건태;김주철;윤길림;이종규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.483-490
    • /
    • 2002
  • A massive amount of marine clay produced as dredging of coast and sea bed is often dumped in open sea and filled in pond. The treatment of marine clay demand a large area and make fatal environmental problems for echo system. This research work intend to manufacture a light-weight landfill materials which are produced by mixing the dredged marine clay with various amount cement and foam. An extensive Uniaxial and Triaxial compression test are carried out to investigate the strength characteristics of the light-weight cement mixed marine clay with foam under various test conditions. The results indicated that the required unit weight has been achieved with negligible change after 28days curing time in water. It is also recognized that the compressive strength of light-weight landfill materials linearly decrease with increasing initial water content, and the rate of strength decrease with increasing initial water content in water curing was smaller than that of air curing Futhermore, the rate of strength decreased with increasing initial water content, however, the rate become smaller as cement content increased.

  • PDF

중합 광원과 중합 시간이 복합레진의 표면 경도에 미치는 영향 (INFLUENCE OF LIGHT SOURCE AND CURING TIME ON SURFACE HARDNESS OF RESIN COMPOSITES)

  • 배상만;이광희;김대업;안호영
    • 대한소아치과학회지
    • /
    • 제28권2호
    • /
    • pp.199-206
    • /
    • 2001
  • 플라즈마 아크 광원을 사용하는 광중합기를 저출력 할로겐 광원을 사용하는 전통적인 광중합기와 비교 평가하기 위하여, 세 종류의 복합레진을 두께가 2, 3, 4, 5mm인 몰드에 충전하고 레진 상면을 할로겐광으로 40초간, 플라즈마광으로 3, 6, 9초간 조사한 후 레진 상면과 하면의 표면미세경도를 각각 측정하였다. 레진시편 상면의 표면경도와 하면의 표면경도 간의 차이는, 두께 2mm 시편에 할로겐광을 40초간 조사하였거나 플라즈마광을 9초간 조사한 경우들을 제외하고, 모두 유의하였다(P<0.05). 레진시편 상면의 표면경도는 전체 실험군들에서 서로 유의한 차이가 없었다. 레진시편 하면의 표면경도는 전체적으로 보아 할로겐광을 40초간 조사한 군들에서 가장 높았고 플라즈마광의 조사시간이 감소함에 따라 감소하였으며 레진시편의 두께가 증가함에 따라 감소하였다. 이상의 결과는 복합레진의 중합깊이 측면에서 볼 때 3, 6, 9초간 조사하는 고출력 플라즈마광의 중합능력이 40초간 조사하는 저출력 할로겐광의 중합능력에 미치지 못함을 시사한다.

  • PDF

Curing efficiency of various resin-based materials polymerized through different ceramic thicknesses and curing time

  • Lee, Jung-Won;Cha, Hyun-Suk;Lee, Joo-Hee
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권3호
    • /
    • pp.126-131
    • /
    • 2011
  • PURPOSE. The aim of this in vitro study was to examine the curing efficiency of various resin-based materials polymerized through ceramic restorations with 3 different thicknesses. Curing efficiency was evaluated by determining the surface microhardness (VHN) of the resin specimens. MATERIALS AND METHODS. Four kinds of resin materials were used. Z350 (3M ESPE $Filtek^{TM}$ Z350: A2 Shade), Z250 (3M ESPE $Filtek^{TM}$ Z250: A2 Shade) and $Variolink^{(R)}$ II (VL: Ivoclar vivadent, base: transparent) either with or without a self-curing catalyst (VLC: Ivoclar vivadent, catalyst: low viscosity/transparent) were filled into the silicone mold (10 mm diameter, 1 mm thick). They were cured through ceramic discs (IPS e.max Press MO-0 ingot ivoclar vivadent, 10 mm diameter, 0.5, 1 and 2 mm thicknesses) by LED light-curing units for 20 and 40 seconds. Vicker's microhardness numbers (VHNs) were measured on the bottom surfaces by a microhardness tester. Data were analyzed using a 3-way analysis of variance (ANOVA) at a significance level of 0.05. RESULTS. The thickness of ceramic disc increased, the VHNs of all four resin types were decreased (P<.05). The mean VHN values of the resins light cured for 40 seconds were significantly higher than that of LED for 20 seconds in all four resin materials (P<.05). VLC showed significantly higher VHN values than VL regardless of other conditions (P<.05). Z350 and Z250 showed higher values than VL or VLC (P<.01). CONCLUSION. Thinner ceramic disc with increased curing time resulted higher VHN values of all resin materials. The use of a catalyst produced a greater hardness with all polymerization methods. Restorative resin materials (Z350, Z250) showed higher VHN values than resin cement materials (VL, VLC).

도재인레이 하방에서 광중합형 복합레진과 이중중합형 복합레진시멘트의 미세경도와 중합률에 관한 연구 (THE MICROHARDNESS AND THE DEGREE OF CONVERSION OF LIGHT CURED COMPOSITE RESIN AND DUAL CURED RESIN CEMENTS UNDER PORCELAIN INLAY)

  • 김승수;조성식;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제25권1호
    • /
    • pp.17-40
    • /
    • 2000
  • Resin cements are used for cementing indirect esthetic restorations such as resin or porcelain inlays. Because of its limitations in curing of purely light cured resin cements due to attenuation of the curing light by intervening materials, dual cured resin cements are recommended for cementing restorations. The physical properties of resin cements are greatly influenced by the extent to which a resin cures and the degree of cure is an important factor in the success of the inlay. The purpose of this study was to evaluate the influence of porcelain thickness and exposure time on the polymerization of resin cements by measuring the microhardness and the degree of conversion, to investigate the nature of the correlation between two methods mentioned above, and to determine the exposure time needed to harden resin cements through various thickness of porcelain. The degree of resin cure was evaluated by the measurements of microhardness [Vickers Hardness Number(VHN)] and degree of conversion(DC), as determined by Fourier Transform Infrared Spectroscopy(FTIR) on one light cured composite resin [Z-100(Z)] and three dual cured resin cements [Duo cement(D), 3M Resin cement(R), and Dual cement(DA)] which were cured under porcelain discs thickness of 0mm, 1mm, 2mm, 3mm with light exposure time of 40sec, 80sec, 120sec, and regression analysis was performed to determine the correlation between VHN and DC. In addition, to determine the exposure time needed to harden resin cements under various thickness of porcelain discs, the changes of the intensity of light attenuated by 1mm, 2mm, and 3mm thickness of porcelain discs were measured using the curing radiometer. The results were obtained as follows ; 1. The values of microhardness and the degree of conversion of resin cements without intervening porcelain discs were 31~109VHN and 51~63%, respectively. In the microhardness Z was the highest, followed by R, D, DA. In the degree of conversion, D and DA was significantly greater than Z and R(p<0.05). 2. The microhardness and the degree of conversion of the resin cements decreased with increasing thickness of porcelain discs, and increased with increasing exposure time, D and R showed great variation with inlay thickness and exposure time, whereas, DA showed a little variation. 3. The intensity of light through 1mm, 2mm, and 3mm porcelain inlays decreased by 0.43, 0.25, and 0.14 times compared to direct illumination, and the respective needed exposure times are 53 sec, 70 sec, and 93 sec. In D and R, 40 sec of light irradiation through 2mm porcelain disc and 80 sec of light irradiation through 3mm porcelain disc were not enough to complete curing. 4. The microhardness and the degree of conversion of the resin cements showed a positive correlationship(R=0.791~0.965) in the order of R, D, Z, DA. As the thickness of porcelain discs increased, the decreasing pattern of microhardness was different from that of the degree of conversion, however.

  • PDF

LED와 플라즈마 광원의 완속기시 광중합 방식이 복합레진의 수축응력에 미치는 영향 (EFFECT OF SOFT-START CURING ON THE CONTRACTION STRESS OF COMPOSITE RESIN RESTORATION POLYMERIZED WITH LED AND PLASMA CURING UNIT)

  • 정양석;이난영;이상호
    • 대한소아치과학회지
    • /
    • 제34권4호
    • /
    • pp.623-631
    • /
    • 2007
  • 본 연구는 LED와 플라즈마 광원의 복합레진의 중합시 완속기시 중합방식(soft-start curing)이 수축응력에 미치는 효과를 비교, 평가하고자 하였다. 할로겐 광원으로 40초간 조사하여 복합레진을 중합한 경우와 LED와 플라즈마 광원의 단일광도 중합방식과 완속기시 중합방식으로 할로겐 40초 동안의 광에너지와 총량이 동일하도록 조사시간을 설정하였고 수축응력은 스트레인 게이지(Strain gauge)를 사용하여 측정하였다. 발생되는 수축응력을 비교, 분석 및 평가한 결과 다음과 같은 결론을 얻었다. 1. 모든 군에서 중합 후 200초까지 수축응력이 급격하게 증가하였으나 이후 마지막 측정시간인 800초까지 완만한 증가를 보였다(P<0.05). 2. LED와 플라즈마 광원의 완속기시 중합방법이 단일광도 중합방법에 비해 수축응력이 낮게 나타났다(P<0.05). 3. 할로겐 광원과 LED와 플라즈마 광원의 완속기시 중합의 수축응력 비교에는 유의차가 없었다(P>0.05). 완속기시 중합 방식을 사용할 경우 단일광도 중합 방식보다 수축응력을 감소시킬 수 있어 임상적으로 고광도 광원인 LED와 플라즈마 광원의 경우 완속기시 중합 방식의 사용이 유리하다고 보여진다. 그러나 완속기시 중합시 불충분한 중합을 방지하기 위해서는 완속기시를 보완하는 추가적인 중합시간이 요구될 것으로 사료된다.

  • PDF

Argon 이온 레이저 중합에 의한 Composite resin의 물성에 관한 연구 (AN INVESTIGATION ON THE CHARACTERIZATION OF COMPOSITE RESIN POLYMERIZED BY THE USE OF AN ARGON ION LASER)

  • 조현경;이정석
    • Restorative Dentistry and Endodontics
    • /
    • 제17권1호
    • /
    • pp.69-82
    • /
    • 1992
  • An experimental investigation of the physical properties of light curing composite resin P-50 was performed, in which an argon ion laser beam was irradiated. The physical and mechanical properties of laser polymerized composite resin were determined by measuring the compressive strength, diametral tensile strength, curing depth and microhardness depending upon the experimental conditions such as the laser irradiation time(10sec, 20sec, 30sec) and laser power(300mW, 500mW, 1000mW). These observations were compared with a conventional visible light curing technique. In addition, to evaluate the marginal adaptation, Class V cavity was prepared on the buccal or lingual surface of the extracted premolar and filled with P-50 light curing resin. The test samples were irradiated with both light sources so that the interface between the restoration and the tooth structure were observed under scanning electron microscope. The most of physical and mechanical properties of the laser cured resin showed a remarkable improvement than those treated with the conventional light source, while the observations with the scanning electron microscope provided no significant difference for two polymerized sources. From the results in the experiment it appears that the potential of an argon ion laser is of important value of the use in the polymerization of composite resin.

  • PDF

Comparison of the bonding strengths of second- and third-generation light-emitting diode light-curing units

  • Lee, Hee-Min;Kim, Sang-Cheol;Kang, Kyung-Hwa;Chang, Na-Young
    • 대한치과교정학회지
    • /
    • 제46권6호
    • /
    • pp.364-371
    • /
    • 2016
  • Objective: With the introduction of third-generation light-emitting diodes (LEDs) in dental practice, it is necessary to compare their bracket-bonding effects, safety, and efficacy with those of the second-generation units. Methods: In this study, 80 extracted human premolars were randomly divided into eight groups of 10 samples each. Metal or polycrystalline ceramic brackets were bonded on the teeth using second- or third-generation LED light-curing units (LCUs), according to the manufacturers' instructions. The shear bond strengths were measured using the universal testing machine, and the adhesive remnant index (ARI) was scored by assessing the residual resin on the surfaces of debonded teeth using a scanning electron microscope. In addition, curing times were also measured. Results: The shear bond strengths in all experimental groups were higher than the acceptable clinical shear bond strengths, regardless of the curing unit used. In both LED LCU groups, all ceramic bracket groups showed significantly higher shear bond strengths than did the metal bracket groups except the plasma emulation group which showed no significant difference. When comparing units within the same bracket type, no differences in shear bond strength were observed between the second- and third-generation unit groups. Additionally, no significant differences were observed among the groups for the ARI. Conclusions: The bracket-bonding effects and ARIs of second- and third-generation LED LCUs showed few differences, and most were without statistical significance; however, the curing time was shorter for the second-generation unit.