• 제목/요약/키워드: Light Polymerization Shrinkage

검색결과 53건 처리시간 0.026초

나노필러를 포함하고 있는 복합레진의 중합특성 (Characteristics of polymerization in nanofiller-containing composite resins)

  • 이희경
    • 대한치과기공학회지
    • /
    • 제29권2호
    • /
    • pp.9-15
    • /
    • 2007
  • As the development of nanotechnology, the use of composite resins which containing nanofillers becomes popular. The purpose of this study was to test the degree of polymerization of nanofillercontaining composite resins. For the study, three different nanofiller-containing composite resins and two different light-curing units were used. To evaluate the degree of polymerization, the maximum polymerization shrinkage taking place during the light curing, and the microhardness, after the light curing, were measured. As results, two light-curing units exhibited a similar emission spectrum to that of the included photoinitiator, camphorquinone. The only difference between the light-curing units were the width of the emission spectrum. Three different composite resins showed different microhardness values. Among them, Grandio showed the greatest microhardness value. However, there was less microhardness difference on the top and bottom surfaces due to the difference of the light-curing units. The maximum polymerization shrinkage values were also similar in the tested specimens regardless of the difference of the light-curing units. However, Grandio showed the least polymerization shrinkage. According to the manufacturers' data, Grandio showed the highest filler content(vol%).

  • PDF

광조사 강도가 복합레진의 중합반응속도에 미치는 영향에 관한 실시간 체적측정법을 이용한 연구 (EFFECT OF LIGHT INTENSITY ON THE POLYMERIZATION RATE OF COMPOSITE RESIN USING REAL-TIME MEASUREMENT OF VOLUMETRIC CHANCE)

  • 라성호;이인복;김창근;조병훈;이광원;손호현
    • Restorative Dentistry and Endodontics
    • /
    • 제27권2호
    • /
    • pp.135-141
    • /
    • 2002
  • Objectives : The aim of this study is to evaluate the effect of light intensity variation on the polymerization rate of composite resin using IB system (the experimental equipment designed by Dr. IB Lee) by which real-time volumetric change of composite can be measured. Methods : Three commercial composite resins [Z100(Z1), AeliteFil(AF), SureFil(SF)] were photopolymerized with Variable Intensity Polymerizer unit (Bisco, U.S.A.) under the variable light intensity (75/150/225/300/375/450mW$^2$) during 20 sec. Polymerization shrinkage of samples was detected continuously by IB system during 110 sec and the rate of polymerization shrinkage was obtained by its shrinkage data. Peak time(P.T.) showing the maximum rate of polymerization shrinkage was used to compare the polymerization rate. Results : Peak time decreased with increasing light intensity(p<0.05). Maximum rate of polymerization shrinkage increased with increasing light intensity(p<0.05). Statistical analysis revealed a significant positive correlation between peak time and inverse square root of the light intensity (AF:R=0.965, Zl:R=0.974, SF:R=0.927). Statistical analysis revealed a significant negative correlation between the maximum rate of polymerization shrinkage and peak time(AF:R=-0.933, Zl:R=-0.892, SF:R=-0.883), and a significant positive correlation between the maximum rate of polymerization shrinkage and square root of the light intensity (AF:R=0.988, Zl:R=0.974, SF:R=0.946). Discussion and Conclusions : The polymerization rate of composite resins used in this study was proportional to the square root of light intensity Maximum rate of polymerization shrinkage as well as peak time can be used to compare the polymerization rate. Real-time volume method using IB system can be a simple alternative method to obtain the polymerization rate of composite resins.

리노미터를 이용한 할로겐 가시광선 광조사기와 플라즈마 아크 광조사기의 복합레진 및 컴포머의 광중합 양상 비교 (COMPARISON OF LINEAR POLYMERIZATION SHRINKAGE IN COMPOSITES AND COMPOMER POLYMERIZED BY PLASMA ARC OR CONVENTIONAL VISIBLE LIGHT CURING)

  • 이재익;박성호
    • Restorative Dentistry and Endodontics
    • /
    • 제27권5호
    • /
    • pp.488-492
    • /
    • 2002
  • The purpose of this study was to evaluate the effectiveness of plasma arc curing (PAC) unit for composite and compomer curing. To compare its effectiveness with conventional quartz tungsten halogen (QTH) light curing unit, the polymerization shrinkage rates and amounts of three composites (Z100, Z250, Synergy Duo Shade) and one compomer, that had been light cured by PAC unit or QTH unit, was compared using a custome made linometer. The measurement of polymerization shrinkage was peformed after polymerization with either QTH unit or PAC unit. In case of curing with the PAC unit, the composite was light cured with Apollo 95E for 6s, the power density of which was recorded as 1350 mW/$\textrm{cm}^2$ by Coltolux Light Meter. For light curing with QTH unit, the composite was light cured for 30s with the XL2500, the power density of which was recorded as 800 mW/$\textrm{cm}^2$ by Coltolux Light Meter. The amount of linear polymerization shrinkage was recorded in the computer every 0.5s for 60s. Ten measurements were made for each material. The amount of linear polymerization shrinkage for each material in 10s and 60s which were cured with PAC or QTH unit were compared with t test. The amount of polymerization shrinkage in the tested materials were compared with 1way ANOVA with Duncan's multiple range test. As for the amounts of polymerization shrinkage in 60s, there was no difference between PAC unit and QTH unit in Z250 and Synergy Duo Shade. In Z100 and Dyract AP, it was lower when it was cured with PAC unit than when it was cured with QTH unit (p<0.05). As for the amounts of polymerization shrinkage in 10s, there was no difference between PAC unit and QTH unit in Z100 and Dyract AP. The amounts of polymerization shrinkage was significantly higher when it was cured with PAC unit in Z250 and Synergy Duo Shade (p<0.05). The amounts of polymerization shrinkage in the tested materials when they were cured with QTH unit were Z250 (6.6um) < Z100 (9.3um), Dyract AP (9.7um) < Synergy Duo Shade (11.2um) (p<0.05). The amount of polymerization shrinkage when the materials were cured with PAC unit were Dyract AP (5.6um) < Z100 (8.1um), Z250(7.0um) < Synergy Duo Shade (11.2um) (p<0.05).

LED를 이용한 복합레진의 광조사시, 중합수축의 속도와 양, 미세경도에 관한 연구 (THE AMOUNTS AND SPEED OF POLYMERIZATION SHRINKAGE AND MICROHARDNESS IN LED CURED COMPOSITES)

  • 박성호;김수선;조용식;이순영;김도현;장용주;문현승;서정원;노병덕
    • Restorative Dentistry and Endodontics
    • /
    • 제28권4호
    • /
    • pp.354-359
    • /
    • 2003
  • This study evaluated the effectiveness of the light emitting diode(LED) units for composite curing. To compare its effectiveness with conventional quartz tungsten halogen (QTH) light curing unit. the microhardness of 2mm composite. Z250, which had been light cured by the LEDs (Ultralume LED2, FreeLight, Developing product Dl) or QTH (XL 3000) were compared on the upper and lower surface. One way ANOVA with Tukey and Paired t-test was used at 95% levels of confidence. In addition. the amount of linear polymerization shrinkage was compared between composites which were light cured by QTH or LEDs using a custom-made linometer in 10s and 60s of light curing, and the amount of linear polymerization shrinkage was compared by one way ANOVA with Tukey. The amount of polymerization shrinkage at 10s was XL3000 > Ultralume 2. 40. 60 > FreeLight, D1 (P<0.05) The amount of polymerization shrinkage at 60s was XL3000 > Ultralume 2, 60> Ultralume 2.40 > FreeLight, D1 (P<0.05) The microhardness on the upper and lower surface was as follows ; (equation omitted) It was concluded that the LEDs produced lower polymerization shrinkage in 10s and 60s compared with QTH unit. In addition. the microhardness of samples which had been cured with LEDs was lower on the lower surfaces than the upper surfaces whereas there was no difference in QTH cured samples.

즉시 광중합과 지연 광중합이 이원 중합 레진시멘트의 중합 수축량에 미치는 영향 (Effects of immediate and delayed light activation on the polymerization shrinkage-strain of dual-cure resin cements)

  • 이소연;김성훈;하승룡;최유성;김희경
    • 대한치과보철학회지
    • /
    • 제52권3호
    • /
    • pp.195-201
    • /
    • 2014
  • 목적: 본 연구에서는 세 가지 중합 방법에 따른 이원 중합 레진 시멘트의 중합 수축률을 비교하고 광조사가 중합 정도에 미치는 영향에 관하여 알아보고자 하였다. 재료 및 방법: 네 가지 종류의 이원 중합형 레진 시멘트(Smartcem 2, Panavia F 2.0, Clearfil SA Luting, Zirconite)가 사용되었다. 각 재료 당 세가지 서로 다른 중합 방법(자가 중합, 즉시 광중합, 5분 지연 광중합)으로 중합하였으며, 각 방법 당 5개의 시편을 사용하였다. Bonded disk method를 사용하여 $37^{\circ}C$에서 30분간, 시간에 따른 중합 수축률을 측정하였다. 측정값은 일원분산분석과 다중 분석을 위한 Scheff$\acute{e}$ test를 사용하였고, 유의수준은 0.05으로 하였다. 결과: Panavia F 2.0를 제외한 나머지 세 종류의 이원 중합 레진 시멘트들은 지연 광중합 반응에서 가장 높은 중합 수축률을 보였다. Panavia F 2.0의 중합 수축률은 중합 방법간에 통계학적 유의성이 없었다. 중합이 개시된 초기 10분 내에 즉시 혹은 지연 광중합에서 모든 시멘트는 90% 이상의 중합수축을 보였다. 결론: 이원 중합 레진 시멘트의 지연 광중합이 중합 효율을 높인다.

점도, 시편형태 그리고 접착의 유무가 광중합 복합레진의 선형중합수축의 측정에 미치는 영향 (THE EFFECT OF VISCOSITY, SPECIMEN GEOMETRY AND ADHESION ON THE LINEAR POLYMERIZATION SHRINKAGE MEASUREMENT OF LIGHT CURED COMPOSITES)

  • 이인복;손호현;권혁춘;엄정문;조병훈
    • Restorative Dentistry and Endodontics
    • /
    • 제28권6호
    • /
    • pp.457-466
    • /
    • 2003
  • The aim of study was to investigate the effect of flow, specimen geometry and adhesion on the measurement of linear polymerization shrinkage of light cured composite resins using linear shrinkage measuring device. Four commercially available composites - an anterior posterior hybrid composite Z100, a posterior packable composite P60 and two flowable composites, Filtek flow and Tetric flow-were studied. The linear polymerization shrinkage of composites was determined using 'bonded disc method' and 'non-bond-ed' free shrinkage method at varying C-factor in the range of 1∼8 by changing specimen geometry. These measured linear shrinkage values were compared with free volumetric shrinkage values. The viscosity and flow of composites were determined and compared by measuring the dropping speed of metal rod under constant load. In non-bonded method, the linear shrinkage approximated one third of true volumetric shrink-age by isotropic contraction. However, in bonded disc method, as the bonded surface increased the linear shrinkage increased up to volumetric shrinkage value by anisotropic contraction. The linear shrinkage value increased with increasing C-factor and approximated true volumetric shrinkage and reached plateau at about C-factor 5∼6. The more flow the composite was, reduced linear shrinkage was measured by compensation radial flow.

복합 레진의 간헐적 광중합 방법이 중합 수축 속도와 치아의 교두 변위에 미치는 영향 (EFFECT OF INTERMITTENT POLYMERIZATION ON THE RATE OF POLYMERIZATION SHRINKAGE AND CUSPAL DEFLECTION IN COMPOSITE RESIN)

  • 김민경;박성호;서덕규;송윤정;이윤;이찬영
    • Restorative Dentistry and Endodontics
    • /
    • 제33권4호
    • /
    • pp.341-351
    • /
    • 2008
  • 지금까지 다수의 연구자들에 의해 광중합형 복합 레진을 중합하는 방법에 있어서 광조사 강도, 시간을 조절하여 중합수축의 속도를 감소시키기 위한 시도가 있었으나, 간헐적 중합법에 관한 구체적인 연구가 부족하다. 이에 저자는 광중합 복합 레진을 간헐적으로 광중합시켜 기존의 연속 중합법과 비교하여 중합 수축의 속도를 측정하고 교두 변위에 대한 영향을 평가해 보고자 하였다. 실험에 사용된 수복 재료는 2종의 광중합형 복합 레진으로 Heliomolar와 Pyramid이며, 중합 수축량을 측정하기 위해 자체 제작한 Linometer (R&B Inc., Daejon, Korea)을 사용하였고 광중합시 광조사 차단장치를 시편과 Linometer 사이에 위치시켜 각각의 서로 다른 중합 주기: (1) 연속 광중합 (60초간 계속 광조사); (2) 2초 광조사, 1초 광차단 (90초 시행), (3) 1초 광조사, 1초 광차단 (120초 시행), (4) 1초 광조사, 2초 광차단 (180초 시행)로 중합시켰다. 군 별로 조사된 총에너지량이 동일하도록 중합 시간을 조절하였고, 최종 중합 수축량을 측정하였으며 중합 수축의 최고속도 ($R_{max}$)와 최고속도를 나타낸 peak time (PT)을 계산하였다. 교두 변위의 측정을 위해서는 각 군별로 10개의 건전한 상악 소구치에 변형시킨 제2급 와동을 형성한 다음 상아질 접착제를 도포하고 일정량의 복합 레진을 충전한 후 치아를 자체 제작된 치아 변위 측정기 (R&B Inc., Daejon, Korea)에 위치시켜 교두 변위양을 알아보았다. 통계분석은 ANOVA test를 이용하여 군 간의 비교를 하였고, 재료간의 비교를 위해서는 t-test를 시행하였다. 실험 결과는 1) 선수축량은 군 간에 차이가 없었고 (p > 0.05), Pyramid가 Heliomolar보다 중합 수축량이 컸다 (p < 0.05). Peak time은 Heliomolar와 Pyramid 레진 모두에서 간헐적 광중합시 더 늦게 나타났다. $R_{max}$는 Heliomolar는 4군 < 3군, 2군 < 1군 순이었고, Pyramid는 3군 < 4군 < 2군, 1군 순으로 측정되었다. 2) Heliomolar는 4군 < 3군 < 2, 1군 그리고 Pyramid는 4, 3군 < 2, 1군 순으로 교두 변위가 컸으며 (p < 0.05), Pyramid가 Heliomolar보다 교두 변위가 크게 나타났다 (p < 0.05). 이번 실험을 통해 복합 레진을 광조사 차단장치를 이용하여 간헐적 광중합시켜 중합수축 속도를 늦춤으로써 교두 변위 양이 감소됨을 알 수 있었다.

상아질 접착제의 중합 시간 조절에 따른 복합레진의 중합 수축 방향의 변화 (THE EFFECT OF ADHESIVE CURING TIMING ON THE DIRECTION OF POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN)

  • 배지현;오명환;김창근;손호현;엄정문;조병훈;권혁춘
    • Restorative Dentistry and Endodontics
    • /
    • 제26권4호
    • /
    • pp.316-325
    • /
    • 2001
  • The purpose of this study was to evaluate the effect of adhesive curing timing on the direction of polymerization shrinkage of light-curing composite resin. In this study, the curing times of adhesive and composite resin were measured by differential scanning calorimeter(DSC). 28 extracted human molars were embedded in clear resin and box-type cavities were prepared. Based on DSC data, the experimental teeth were divided into 4 groups. Group 1: no bond; Group 2: late curing; Group 3: Intermediate curing; Group 4: Early curing. After treating with adhesive, the buccal cavities were filled with Z-100 hybrid composite resin and the lingual ones were filled with AEliteflo flowable composite resin. The depressions at the surface were measured by surface profilometer, then the specimens were embedded in clear resin and sectioned. Impressions were obtained and used to get epoxy resin replicas. The epoxy replicas were gold-coated and observed under SEM. Average Maximum Gap(AMG), Gap Proportion(GP), Average Marginal Index(AMI) were used to compare the shrinkage gap of each group. The results were statistically analyzed using the Kruskal-Wallis One Way ANOVA, Student-Newman-Keuls method. The results of this study were as follows. 1. Average Maximum Gap, Gap Proportion, Average Marginal Index and depression at the surface or Z-100 hybride composite resin were smaller than those of AEliteflo flowable composite resin(P<0.05). 2. When the bonding between composite resin and tooth structure was strong, the shrinkage gap was small, and depression at the surface was deep(P<0.05). 3. In the well-bonded group, light-curing composite resin shrank toward bonded cavity wall, not toward light source. The result suggested that the direction of polymerization shrinkage was affected by the quality of bonding in the dentin-resin interface. The strong was the bonding between composite resin and tooth structure, the smaller was the gap and the deeper was the depression at the surface. Then the flow to compensate the polymerization shrinkage proceeded from surface to bonded cavity wall.

  • PDF

A study of polymerization shrinkage of composite resins cured by various light intensities

  • Lim, Mi-Young;Hong, Chan-Ui
    • 대한치과보존학회:학술대회논문집
    • /
    • 대한치과보존학회 2003년도 제120회 추계학술대회 제 5차 한ㆍ일 치과보존학회 공동학술대회
    • /
    • pp.613-613
    • /
    • 2003
  • The purpose of this study was to compare the effect of exponential curing method with conventional curing and two step soft start curing method on polymerization shrinkage of composite resins. Three brands of composite resins (Synergy Duo Shade, Z-250, Supreme) and three brands of light curing units (Spectrum 800, Elipar Highlight, Elipar Trillight) were used. In this study, the diameter of specimen was 5.5mm and height 1.6mm and the specimen was cured for 40 seconds. The shrinkage was measured by custom made linometer. The amount of linear polymerization shrinkage recorded in the computer every 0.5 second for 90 seconds. Each group was measured 10 times.(omitted)

  • PDF

Silorane-기질 치아 수복용 복합레진의 중합수축과 중합수축응력 (Polymerization Shrinkage and Stress of Silorane-based Dental Restorative Composite)

  • 이인복;박성환;권현정;구자국;최낙삼
    • Composites Research
    • /
    • 제26권3호
    • /
    • pp.182-188
    • /
    • 2013
  • 본 연구의 목적은 silorane 기질의 치아 수복용 복합레진의 중합수축과 수축응력의 동력학을 평가하고 전통적인 methacrylate 기질의 복합레진과 비교하기 위함이다. 두 종의 methacrylate 기질의 복합레진(Z250, Z350 flowable)과 silorane 기질 복합레진(P90)이 사용되었다. 아르키메데스 원리를 응용해 자체 제작한 중합수축 측정 장치를 사용하여 광중합 중 일어나는 복합레진의 체적 중합수축을 측정하였고 스트레인게이지로 중합수축응력을 측정하였다. Silorane 기질 복합레진인 P90의 중합수축과 최대 중합수축률이 가장 낮았고 methacrylate 기질 복합레진인 Z350 flowable이 가장 높았다. Methacrylate 기질의 복합레진과 비교하여 silorane 기질의 복합레진 P90이 최대 수축률에 이른 시간은 더 길었고 중합수축응력은 낮았다.