• Title/Summary/Keyword: Light Pollution

Search Result 379, Processing Time 0.031 seconds

Exposure Assessment of Dust, Ultra Fine Dust(Particulate Matter 2.5, PM2.5) and Black Carbon among Aircraft Cabin Cleaners (항공기 기내 청소노동자의 분진, 초미세먼지(PM2.5) 및 블랙카본 노출수준 평가)

  • Hyunhee Park;Sedong Kim;Sungho Kim;Seung-Hyun Park
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.171-187
    • /
    • 2023
  • Objectives: Aircraft cabin cleaning work is characterized by being performed within a limited time in a narrow and enclosed space. The objective of this study was to evaluate the exposure levels to dust, ultra fine dust(PM2.5) and black carbon(BC) among aircraft cabin cleaners. Methods: Active personal air sampling for respirable dust(n=73) and BC(n=47) was conducted during quick transit cleaning(cabin general and vacuum-specific) and seat cover replacement and total dust and PM2.5 were area-air-sampled as well. Also, size distribution of particle was identified with the cleaning workers targeted. Dusts were collected with PVC filters using gravimetric analysis. The concentration of PM2.5 and the particle size distribution were measured with real-time direct reading portable equipment using light scattering analysis. The concentration of BC was measured by aethalometer(filter-based real-time light absorption analysis instrument). Results: The geometric mean of respirable dust was the highest at vacuum cleaning as 74.4 ㎍/m3, following by replacing seat covers as 49.3 ㎍/m3 and cabin general cleaning as 47.8 ㎍/m3 . The arithmetic mean of PM2.5 was 4.83 ~ 9.89 ㎍/m3 inside the cabin, and 28.5~44.5 ㎍/m3 outside the cabin(from bus and outdoor waiting space). From size distribution, PM2.5/PM10 ratio was 0.54 at quick transit cleaning and 0.41 at replacing seat covers. The average concentration of BC was 2~7 ㎍/m3, showing a high correlation with the PM2.5 concentration. Conclusions: The hazards concentration levels of aircraft cabin cleaners were very similar to those of roadside outdoor workers. As the main source of pollution is estimated to be diesel vehicles operating at airports, and it is necessary to replace older vehicles, strengthen pollutant emission control regulations, and introduce electric vehicles. In addition, it is necessary to provide as part of airport-inftastructure a stable standby waiting space for aircraft cabin cleaners and introduce a systematic safety and health management system for all workers in the aviation industry.

ANALYSIS AND OPTIMIZATION of INJECTION TIMING for AN ADVANCED COMPRESSED AIR ENGINE KIT

  • Kumar, Akshay;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.54-63
    • /
    • 2015
  • Increasing air pollution levels and the global oil crisis has become a major hindrance in the growth of our automobile sector. Traditional Internal Combustion engines running on non-renewable fuels are proving to be the major culprit for the harmful effects on environment. With few modifications and also with assistance of few additional components current small SI engines can be modified into a pneumatic engine (commonly known as Compressed Air Engines) without much technical complications where the working fluid is compressed air. The working principle is very basic as adiabatic expansion of the compressed air takes place inside the cylinder pushing the piston downwards creating enough MEP to run the crank shaft at decent RPM. With the assistance of new research and development on pneumatic engines can explore the potential of pneumatic engines as a viable option over IC engines. The paper deals with analysis on RPM variation with corresponding compressed air injection at different crank angles from TDC keeping constant injection time period. Similarly RPM variation can also be observed at different injection pressures with similar injection angle variation. A setup employing a combination of magnetic switch (reed switch), magnets and solenoid valve is used in order to injection timing control. A conclusive data is obtained after detailed analysis of RPM variation that can be employed in newly modified pneumatic engines in order to enhance the running performance. With a number of benefits offered by pneumatic engine over IC engines such as no emissions, better efficiency, low running cost, light weight accompanied by optimized injection conditions can cause a significant development in pneumatic engines without any major alteration.

Effect of Porcelain/Polymer Interface on the Microstructure, Insulation Characteristics and Electrical Field Distribution of Hybrid Insulators (자기재/폴리머 계면이 하이브리드 애자의 미세구조, 절연특성과 전계분포에 미치는 영향)

  • Cho, Jun-Young;Kim, Woo-Seok;An, Ho-Sung;An, Hee-Sung;Kim, Tae-wan;Lim, Yun-Seog;Bae, Sung-Hwan;Park, Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.558-565
    • /
    • 2017
  • Hybrid insulators that have the advantages of both porcelain (high mechanical strength and chemical stability) as well as polymer (light weight and high resistance to pollution) insulators, can be used in place of individual porcelain and polymer insulators that are used for both mechanical support as well as electrical insulation of overhead power transmission lines. The most significant feature of hybrid insulators is the presence of porcelain/polymer interfaces where the porcelain and polymer are physically bonded. Individual porcelain and polymer insulators do not have such porcelain/polymer interfaces. Although the interface is expected to affect the mechanical/electrical properties of the hybrid insulator, systematic studies of the adhesion properties at the porcelain/polymer interface and the effect of the interface on the insulation characteristics and electric field distribution of the hybrid insulator have not been reported. In this study, we fabricated small hybrid insulator specimens with various types of interfaces and investigated the effect of the porcelain/polymer interface on the microstructure, insulating characteristics, and electric field distribution of the hybrid insulators. It was observed that the porcelain/polymer interface of the hybrid insulator does not have a significant effect on the insulating characteristics and electric field distribution, and the hybrid insulator can exhibit electrical insulating properties that are similar or superior to those of individual porcelain and polymer insulators.

A study on the Crashworthiness Design of Bow Structure of Oil Carriers -Collision Behaviour of Simplified Models(1) (유조선 선수부의 내충돌 구조설계에 관한 연구 -이상화 모델의 충돌거동 분석(1))

  • 신영식;박명규
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.120-127
    • /
    • 2001
  • The potential pollution problems resulting from tanker collision necessitate the requirement for an effective structural design and the development of relevant safety regulations. During a few decades, the great effort has been made by the international Maritime Organization and the Administration, etc, to reduce oil spillage from collision accidents. However there is still a need for investigation in the light of structural evaluation method for the experiments and rational analysis, and design development for an operational purpose of ships. This study aims for investigating a complicated structural response of bow structures of simplified models and oil carriers for assessing the energy dissipation and crushing mechanics of the striking vessels through a methodology of the numerical analysis for the various models and its design changes. Through these study an optimal bow construction absorbing great portion of kinetic energy at the least penetration depth prior to reach to the cargo area and an effective location of collision bulkhead are investigated. In order to obtain a rational results in this study, three stages of collision simulation procedures have been performed step by step as follows; 1) 16 simplified ship models are used to investigate the structural response against bow collision with variation of primary and secondary members. Mass and speed are also varied in four conditions. 2) 21 models consisted of 5 sizes of the full scaled oil carriers are used to perform the collision simulation with the various sizes and deadweight delivered in a recent which are complied with SOLAS and MARPOL. 3) 36 models of 100l oil carrier are used to investigate the structural response and its influence to the collision bulkhead against bow collision in variation with location of collision bulkhead, primary members, framing system and colliding conditions, etc. By the first study using simplified models the response of the bow collision is synthetically evaluated for the parameters influencing to the absorbed energy, penetration depth and impact force, etc.

  • PDF

An Analysis of Thermal Environment Change according to Green Roof System (옥상녹화 조성에 따른 열환경 변화분석)

  • Park, Ji-Young;Jung, Eung-Ho;Kim, Dae-Wuk;Cha, Jae-Gyu;Shimizu, Aki
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.11a
    • /
    • pp.100-103
    • /
    • 2009
  • The impermeable area on the surface of city has been increased as buildings and artificial landcover have continually been increased. Urban development has gradually decreased the green zone in downtown and alienated the city from the natural environment on outskirt area devastating the natural eco system. There arise the environmental problems peculiar to city including urban heat island phenomenon, urban flood, air pollution and urban desertification. As one of urban plans to solve such problems, green roof system is attracting attentions. The purpose of this study was to investigate the heat reduction effect according to the development of green roof system and to quantify the heat reduction effect by analyzing through simulation the heat environment before and after green roof system. For thermal environment analysis, Thermo-Render 3.0 was used that was developed by Tokyo Industrial College to simulate. The simulation showed that the heat island index before and after the development of tree-planting on rooftop changed maximum $0.86^{\circ}C$ and the surface temperature changed about $20^{\circ}C$. Only with lawn planting, heat reduction effect was great and it means that the green roof system in low-management-light-weight type is enough to see effect. The simulation identified that only lawn planting for green rooftop brought such difference and could lower the heat island index at a narrow area. It is judged that application of green roof system to wider areas might relieve urban heat island phenomenon positively.

  • PDF

Urban Aerosol Number Concentration and Scattering Coefficient in Seoul, Korea, during Winter (서울지역 겨울철 대기 에어로졸의 수 농도 및 산란계수 분석)

  • Lee, Hyun-Hye;Kim, Jin Young;Lee, Seung-Bok;Bae, Gwi-Nam;Yum, Seong Soo
    • Particle and aerosol research
    • /
    • v.6 no.2
    • /
    • pp.91-103
    • /
    • 2010
  • Size-segregated number concentration and scattering coefficient of urban aerosols were measured using an SMPS (scanning mobility particle sizer) and a nephelometer, respectively in Seoul, Korea, during the winter season of 2003. The average number concentrations of ultrafine particles (20~100 nm) and accumulation mode particles (100~600 nm) were $2,170\;particles\;cm^{-3}$ and $1,521\;particles\;cm^{-3}$, respectively. The scattering coefficient at the wavelength of 550 nm ranged from $62.6Mm^{-1}$ to $330.1Mm^{-1}$ and average value was $163.4Mm^{-1}$. The peak concentrations of ultrafine particles and accumulation mode particles were simultaneously recorded between 6:00 and 9:00 A.M., indicating the effect of vehicle emissions which are major air pollution sources in the urban atmosphere. On average, the number concentration of ultrafine particles was 1.4 times higher than that of accumulation mode particles, although it was a little higher during the morning peak time. The variation of aerosol scattering coefficient was in good agreement with that of accumulation mode particle number concentration rather than that of ultrafine particle number concentration.g coefficient was in good agreement with that of accumulation mode particle number concentration rather than that of ultrafine particle number concentration.

Evaluation of CO2 Reduction Effected by GHG Reduction Policy of Vehicle (자동차 온실가스 저감정책에 따른 이산화탄소 저감 효과 평가)

  • Park, Yeon Jae;Kwon, Sang Il;Lee, Jae Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.280-288
    • /
    • 2016
  • Greenhouse gas (GHG) emissions have given rise to climate change which is one of the most serious environmental challenges that the world faces today. In response, Republic of Korea has proposed "Low Carbon, Green Growth" as a new economic paradigm accompanying with the ultimate aim of building a sense of responsibility for the environment. Korean government has set the ambitious national GHG emission reduction target which aims 37% reduction in the business-as-usual (BAU) level of 2030. The transportation sector plays a key role in this target. In the transportation sector, the GHG reduction target of 34.3% in the BAU level by 2020 has been allocated in order to consider the industrial specificity. Furthermore, it is known that the GHG reduction in the transportation sector has relatively minimal side effects compared to those of other sectors. In order to meet this national GHG reduction target, Korean government has set $CO_2$ emission regulation of vehicle for 2020. The purpose of this study is to evaluate the reduction effects by the average GHG regulation of vehicles. $CO_2$ emissions, between 2009 and 2013 were analysed by reduction measure such as technology improvement, light-weight, segment shift, diesel vehicle sales. During this period, $CO_2$ of vehicle was reduced every year by 19.9 g/km (i.e., 3.3% reduction per year). $CO_2$ reduction of imported vehicle is greater than domestic vehicle because of segment shift toward small size vehicle and higher diesel vehicle sales.

Study on Determination of Permissible Soil Concentrations for Explosives and Heavy Metals (화약류 및 중금속의 인체위해성평가 및 생태독성에 기반한 토양허용농도도출에 관한 연구)

  • Kim, Moonkyung;Jung, Jae-Woong;Nam, Kyoungphile;Jeong, Seulki
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.19-27
    • /
    • 2015
  • Permissible soil concentrations for explosives (i.e., TNT and RDX) and heavy metals (i.e., Cu, Zn, Pb, and As) heve been derived from human risk and ecotoxicity, respectively. For TNT and RDX, human risk based-permissible soil concentrations were determined as 460 mg-TNT/kg-soil and 260 mg-RDX/kg-soil. Ecotoxicity based-permissible soil concentrations for Cu and Zn were determined from species sensitivity distribution (SSD) and uncertainty factor of 1 to 5, yielding 18.0-40.0 mg-Cu/kg-soil and 46.0-100 mg-Zn/kg-soil. For Pb and As, ecotoxicity data were not enough to establish SSD so that a deterministic method was used, generating 13.8-30.8 mg-Pb/kg-soil and 2.10-4.60 mg-As/kg-soil. It is worth noting that the methodology used to derive permissible concentrations in soil can differ depending on ecotoxicity data availability and socio-economic situations, which results in different permissible concentrations. The permissible concentrations presented in this study have been derived from conservative assumptions for exposure parameters, and thus should be considered as soil standards. In the light of remediation and pollution management of a site of interest, the site-specific and receptor-specific permissible soil concentrations should be derived considering potential receptors, current and future land use, background concentrations, and socio-economic consultation.

Water Quality of the Yellow Sea in Summer (하계 황해의 수질 환경 특성)

  • YOU Sun-Jae;KIM Jong-Gu;KIM Gwang-Su
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.825-835
    • /
    • 1994
  • The distributions of temperature, salinity, dissolved oxygen, chemical oxygen demand, dissolved inorganic nitrogen and phosphate in the Yellow Sea are described from data collected in June and July, 1994. Based on the observations of water temperature and salinity, the fresh waters originated from the Changjiang River were found to affect the waters adjacent to Cheju Island. In the light of the distributions of dissolved oxygen and chemical oxygen demand, the western part of the Yellow Sea was worse in water quality than the eastern part. Based on data of nutrients, eutrophication indices of the western part were higher than those of the eastern part in summer. It is concluded that the western part of the Yellow Sea appeared to receive high pollution loads from rivers and was evaluated to have high potentiality of red tide occurrence.

  • PDF

Fundamental Study for Development of an Anti-Icing Pavement System Using Carbon-Fiber Sheet (탄소섬유 쉬트를 활용한 도로 결빙방지 시스템 개발을 위한 기초연구)

  • Lim, Chisu;Park, Kwangpil;Lee, Jaejun;Lee, Byungsuk
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • PURPOSES : This paper aims to develop a road pavement de-icing system using carbon sheet to replace the older snow de-icing method. Carbon sheet is a light and high-strength metal. Hence, various bodies of research for its applications in many industries have progressed. METHODS : The experiment was conducted in a laboratory. The carbon sheet supplied voltage through a power supply system, and produced heat transfers to the concrete surface. Various factors, such as pavement material, carbon sheet width, penetration depth, and freezing-thawing resistance, were considered in the conducted experiments to confirm the heating transfer efficiency of the carbon sheet. RESULTS : The carbon sheet used was a conductor. Therefore, it produced heat if voltage was supplied. The exposed carbon sheet on the atmosphere did not affect the carbon sheet width when it provided constant voltage. However, the sheet showed different heating behaviors by width change when the carbon sheet penetrated into the concrete. Moreover, the freezing-thawing resistance was decreased by the carbon sheet with increasing width. CONCLUSIONS : The experiments confirmed the possibility of developing a road snow melting system using a carbon sheet. The antiicing system using the carbon sheet to replace the traditional anti-icing system has disadvantages of environmental pollution risk and electric leakage. The pavement also improved its toughness resistance. The utilization value will be very high in the future if carbon sheet heat loss can be minimized and durability is improved.