• 제목/요약/키워드: Light Output Efficiency

검색결과 231건 처리시간 0.03초

CCFL 및 LED 모니터 광원 효율 분석 (Analysis on the Light Source Efficiency of CCFL and LED Monitors)

  • 신희우;유재수
    • 한국콘텐츠학회논문지
    • /
    • 제21권6호
    • /
    • pp.44-50
    • /
    • 2021
  • 본 논문은 최적의 모니터 효율성을 설계하기 위해 CCFL과 LED 모니터의 광효율을 비교 분석한다. LCD 디스플레이 광원으로 많이 사용이 되고 있는 냉음극관 램프(Cold Cathode Fluorescent Lamp, CCFL)은 초기 구동 시 1,200[V]이상의 고전압과 점등 후 400 ~ 800[V]의 일정한 정상전압을 공급한다. 또한 3 ~ 6[mA]의 전류를 안정화 시킬 수 있는 전원회로가 필요하다. 고전압을 인가를 하게 되면 인버터에 무리가 많이 가고 냉음극관 램프에 많은 열이 발생을 하여 BLU(Back Light Unit)에 상당한 손상을 주어 그을리는 현상 발생, 이로 인하여 화면 출력 시 화면이 정상적인 색상을 출력을 못하고 노란색 출력, 화면 어두워짐을 확인할 수 있었다. 이러한 증상을 미연에 방지를 하고자 LCD디스플레이의 광원을 냉음극관 램프(Cold Cathode Fluorescent Lamp, CCFL)를 대신하여 발광다이오드(Light Emitting Diode, LED)을 이용하면 효율을 증대할 수 있다. 결론적으로 CCFL 방식보다 LED방식의 효율이 좋다는 것을 증명한다.

Performance Improvement of Flashlamp-Pumped Ti: sapphire Laser

  • Xia, Jinan;Lee, Min-Hee;Eur, Jeong-Pil
    • Journal of the Optical Society of Korea
    • /
    • 제6권2호
    • /
    • pp.48-54
    • /
    • 2002
  • Experimental study is performed on flashlamp-pumped Ti: sapphire lasers with single, double, and four-partial-ellipse-pump cavities aiming at improving the performance of the lasers. The output energy of 604 mJ per pulse with a width of 25 $\mu$s at a total laser efficiency of 0.13% is achieved in the laser pumped by a light pulse of 45$\mu$s without a fluorescent converter The laser output energy versus its Ti: sappy ire rod length, pumping-light pulse duration, and electrical input energy are discussed with or without using a fluorescent converter. The result shows that much more output energy is obtained il a longer Ti: sapphire-rod laser pumped by a shorter light pulse when its output coupler has an optimized transmittance. In addition, an enhancement of output energy by a factor of 7 is achieved. in the laser using a fluorescent converter LD490.

ZnO 나노로드 배열에 의한 GaN기반 광다이오드의 광추출율 향상 (Improved Light Output of GaN-Based Light-Emitting Diodes with ZnO Nanorod Arrays)

  • 이삼동;김경국;박재철;김상우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.59-60
    • /
    • 2008
  • GaN-based light-emitting diodes (LEDs) with ZnO nanorod arrays on a planar indium tin oxide (ITO) transparent electrode were demonstrated. ZnO nanorods were grown into aqueous solution at low temperature of $90^{\circ}C$. Under 20 mA current injection, the light output efficiency of the LED with ZnO nanorod arrays on ITO was remarkably increased by about 40 % of magnitude compared to the conventional LED with only planar ITO. The enhancement of light output by the ZnO nanorod arrays is due to the formation of side walls and a rough surface resulting in multiple photon scattering at the LED surface.

  • PDF

Improvement in LED structure for enhanced light-emission

  • Park, Seong-Ju
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.21-21
    • /
    • 2003
  • To increase the light-emission efficiency of LED, we increased the internal and external quantum efficiency by suppressing the defect formation in the quantum well and by increasing the light extraction efficiency in LED, respectively. First, the internal quantum efficiency was improved by investigating the effect of a low temperature (LT) grown p-GaN layer on the In$\sub$0.25/GaN/GaN MQW in green LED. The properties of p-GaN was optimized at a low growth temperature of 900oC. A green LED using the optimized LT p-type GaN clearly showed the elimination of blue-shift which is originated by the MQW damage due to the high temperature growth process. This result was attributed to the suppression of indium inter-diffusion in MQW layer as evidenced by XRD and HR-TEM analysis. Secondly, we improved the light-extraction efficiency of LED. In spite of high internal quantum efficiency of GaN-based LED, the external quantum efficiency is still low due to the total internal reflection of the light at the semiconductor-air interface. To improve the probability of escaping the photons outside from the LED structure, we fabricated nano-sized cavities on a p-GaN surface utilizing Pt self-assembled metal clusters as an etch mask. Electroluminescence measurement showed that the relative optical output power was increased up to 80% compared to that of LED without nano-sized cavities. I-V measurement also showed that the electrical performance was improved. The enhanced LED performance was attributed to the enhancement of light escaping probability and the decrease of resistance due to the increase in contact area.

  • PDF

A High-Efficiency, Auto Mode-Hop, Variable-Voltage, Ripple Control Buck Converter

  • Rokhsat-Yazdi, Ehsan;Afzali-Kusha, Ali;Pedram, Massoud
    • Journal of Power Electronics
    • /
    • 제10권2호
    • /
    • pp.115-124
    • /
    • 2010
  • In this paper, a simple yet efficient auto mode-hop ripple control structure for buck converters with light load operation enhancement is proposed. The converter, which operates under a wide range of input and output voltages, makes use of a state-dependent hysteretic comparator. Depending on the output current, the converter automatically changes the operating mode. This improves the efficiency and reduces the output voltage ripple for a wide range of output currents for given input and output voltages. The sensitivity of the output voltage to the circuit elements is less than 14%, which is seven times lower than that for conventional converters. To assess the efficiency of the proposed converter, it is designed and implemented with commercially available components. The converter provides an output voltage in the range of 0.9V to 31V for load currents of up to 3A when the input voltage is in the range of 5V to 32V. Analytical design expressions which model the operation of the converter are also presented. This circuit can be implemented easily in a single chip with an external inductor and capacitor for both fixed and variable output voltage applications.

악성종양의 형광영상 진단을 위한 다파장 여기광원장치의 개발과 평가 (Development and Evaluation of Multi-Wavelength Excitation light Source for Fluorescence Imaging to Diagnose Malignancies)

  • 임현수
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권2호
    • /
    • pp.113-121
    • /
    • 2009
  • This study aims at designing and evaluating light source devices that can stably generate light with various wavelengths in order to make possible PDD using a photosensitizer and diagnosis using auto-fluorescence. The light source was a Xenon lamp and filter wheel, composed of an optical output control through Iris and filters with several wavelength bands. It also makes the inducement of auto-fluorescence possible because it is designed to generate a wavelength band of 380-420nm, 430-480nm, and 480-560nm. The transmission part of the light source was developed to enhance the efficiency of light transmission. To evaluate this light source, the characteristics of light output and wavelength band were verified. To validate the capability of this device as PDD, the detection of auto-fluorescence using mouse models was performed.

Improvement of Light Extraction Efficiency of LED Packages Using an Enhanced Encapsulant Design

  • Choi, Hyun-Su;Park, Joon-Sik;Moon, Cheol-Hee
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.370-376
    • /
    • 2014
  • We optimized the design of the flat encapsulant of a light-emitting diode (LED) package to obtain higher light output power (LOP), both by experiment and simulation using three-dimensional ray-tracing software. In the experiment, the refractive index of the encapsulant was varied (1.41 and 1.53). In addition, double-layer structures with these refractive indices (1.41/1.53) were investigated by varying the shape of the interface between the two among flat, concave, and convex. The experiments showed that the LOP of the double-layer encapsulant with convex interface increased by 13.4% compared to the single-layer encapsulant with a refractive index 1.41, which was explained by the increase of the light extraction efficiency (LEE) in connection with the increase of the critical angle (${\theta}_c$) and the decrease of the Fresnel reflection.

Epitaxial Structure Optimization for High Brightness InGaN Light Emitting Diodes by Using a Self-consistent Finite Element Method

  • Kim, Kyung-Soo;Yi, Jong Chang
    • Journal of the Optical Society of Korea
    • /
    • 제16권3호
    • /
    • pp.292-298
    • /
    • 2012
  • The epitaxial layer structures for blue InGaN light emitting diodes have been optimized for high brightness applications with the output power levels exceeding 1000 $W/cm^2$ by using a self-consistent finite element method. The light-current-voltage relationship has been directly estimated from the multiband Hamiltonian for wurtzite crystals. To analyze the efficiency droop at high injection levels, the major nonradiative recombination processes and carrier spillover have also been taken into account. The wall-plug efficiency at high injection levels up to several thousand $A/cm^2$ has been successfully evaluated for various epilayer structures facilitating optimization of the epitaxial structures for desired output power levels.

나노 구조의 패턴을 갖는 n-type GaN 기판을 이용한 380 nm UV-LED의 광 추출 효율 개선 (Improvement in Light Extraction Efficiency of 380 nm UV-LED Using Nano-patterned n-type Gan Substrate)

  • 백광선;조민성;이영곤;;송영호;김승환;김재관;전성란;이준기
    • 한국재료학회지
    • /
    • 제21권5호
    • /
    • pp.273-276
    • /
    • 2011
  • Ultraviolet (UV) light emitting diodes (LEDs) were grown on a patterned n-type GaN substrate (PNS) with 200 nm silicon-di-oxide (SiO2) nano pattern diameter to improve the light output efficiency of the diodes. Wet etched self assembled indium tin oxide (ITO) nano clusters serve as a dry etching mask for converting the SiO2 layer grown on the n-GaN template into SiO2 nano patterns by inductively coupled plasma etching. PNS is obtained by n-GaN regrowth on the SiO2 nano patterns and UV-LEDs were fabricated using PNS as a template. Two UV-LEDs, a reference LED without PNS and a 200 nm PNS UV-LEDs were fabricated. Scanning Electron microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Photoluminescence (PL) and Light output intensity- Input current- Voltage (L-I-V) characteristics were used to evaluate the ITO-$SiO_2$ nanopattern surface morphology, threading dislocation propagation, PNS crystalline property, PNS optical property and UVLED device performance respectively. The light out put intensity was enhanced by 1.6times@100mA for the LED grown on PNS compared to the reference LED with out PNS.

Direct printing process based on nanoimprint lithography to enhance the light extraction efficiency of AlGaInP based red LEDs

  • Cho, Joong-Yeon;Kim, Jin-Seung;Kim, Gyu-Tae;Lee, Heon
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.171-171
    • /
    • 2012
  • In this study, we fabricated the high-brightness AlGaInP-based red light emitting diodes (LED)s using by direct printing technique and inductive coupled plasma (ICP) reactive ion etching (RIE). In general, surface roughening was fabricated by wet etching process to improve the light extraction efficiency of AlGaInP-based red LED. However, a structure of the surface roughening, which was fabricated by wet etching, was tiled cone-shape after wet etching process due to crystal structure of AlGaInP materials, which was used as top-layer of red LED. This tilted cone-shape of surface roughening can improve the light extraction of LED, but it caused a loss of the light extraction efficiency of LED. So, in this study, we fabricated perfectly cone shaped pattern using direct printing and dry etching process to maximize the light extraction efficiency of LED. Both submicron pattern and micron pattern was formed on the surface of red LED to compare the enhancement effect of light extraction efficiency of LEDs according to the diameter of sapphire patterns.After patterning process using direct printing and ICP-RIE proceeded on the red LED, light output was enhanced up to 10 % than that of red LED with wet etched structure. This enhancement of light extraction of red LED was maintained after packaging process. And as a result of analyze of current-voltage characteristic, there is no electrical degradation of LED.

  • PDF