• Title/Summary/Keyword: Light I-V

Search Result 444, Processing Time 0.027 seconds

Seminiferous Epithelium Cycle and Developmental Stages of Spermatids in the Clethrionomys rufocanus

  • Lee, Jung-Hun
    • Development and Reproduction
    • /
    • v.17 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • The seminiferous epithelium cycle and developmental stages of spermatids in Clethrionomys rufocanus were observed under a light microscope. The seminiferous epithelium cycle was divided into 8 stages. Type Ad spermatogonia appeared through all stages. Type Ap, In, and B spermatogonia appeared in stages I, II, III, and IV. In the first meiosis prophase, the leptotene spermatocytes appeared from stage V, the zygotene spermatocytes in stages I, VI, VII, VIII, the pachytene spermatocytes from stages II to VI, the diplotene spermatocytes in stage VII. The meiotic figures and interkinesis spermatocytes were observed in stage VIII. Developing spermatids were subdivided into 10 steps, based on the morphological characteristics such as the acrosome formation changes in spermatozoa, nucleus, cytoplasm, and spermiation changes. The C. rufocanus spermatocytogenesis and spermiogenesis results displayed similar results with Apodemus agrarius coreae and A. speciosus peninsulae. Considering all the results, the spermatogenesis may be useful information to analyze the differentiation of spermatogenic cells and the breeding season.

Seminiferous Epithelium Cycle in the Korea Squirrel, Tamias sibiricus

  • Jung Tae-Dong;Lee Jung-Hun
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.275-283
    • /
    • 2004
  • The annual changes in testis weight and diameter of seminiferous tubules, and the seminiferous epithelium cycle of Tamias sibiricus were studied by light microscope. Testis weight and diameter of seminiferous tubule are significantly increased from January to July, and decreased rapidly to the size from August to December. Spermatogenesis occurs from January to July, and spermatocytogenesis are produced from August to December. The cycle of the seminiferous epithelium was divided into 12 stages during the development of spermatids as a changes of the nucleus and acrosomal structure, presence and/or absence of residual body, appearance and/or absence of sperm tail and meiotic figure and spermiation. The dark type spermatogonia (Ad) are appeared in all stages (I ~ XII), and the spermatids of step 10 are observed at I, II, X and XII stages. The spermatids of step 11 are appeared in III and IV stages, only the step 12 spermatid observed in V stage.

  • PDF

Fabrication of the Plasma Focus Device for Advanced Lithography Light Source and Its Electro Optical Characteristics in Argon Arc Plasma (차세대 리소그래피 빛샘 발생을 위한 플라스마 집속 장치의 제작과 아르곤 아크 플라스마의 발생에 따른 회로 분석 및 전기 광학적 특성 연구)

  • Lee S.B.;Moon M.W.;Oh P.Y.;Song K.B.;Lim J.E.;Hong Y.J.;Yi W.J.;Choi E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.380-386
    • /
    • 2006
  • In this study, we had designed and fabricated the plasma focus device which can generate the light source for EUV(Extreme Ultra Violet) lithography. And we also have investigated the basic electrical characteristics of currents, voltages, resistance and inductance of this system. Voltage and current signals were measured by C-dot and B-dot probe, respectively. We applied various voltages of 1.5, 2, 2.5 and 3 kV to the anode electrode and observed voltages and current signals in accordance with various Ar pressures of 1 mTorr to 100 Torr in diode chamber. It is observed that the peak values of voltage and current signals were measured at 300 mTorr, where the inductance and impedance were also estimated to be 73 nH and $35 m{\Omega}$ respectively. The electron temperature has been shown to be 13000 K at the diode voltage of 2.5 kV and this gas pressure of 300 mTorr. It is also found that the ion density Ni and ionization rate 0 have been shown to be $N_i = 8.25{\times}10^{15}/cc$ and ${\delta}$= 77.8%, respectively by optical emission spectroscopy from assumption of local thermodynamic equilibrium(LTE) plasma.

Fabrication of Organic Electroluminescent Device and electro-optical properties using metal-chelates($Snq_2,Snq_4$) for Emitting Material Layer (금속-킬레이트계($Snq_2,Snq_4$) 발광층을 이용한 유기 전기 발광 소자의 제작과 전기.광학적 특성)

  • Yoon, H.C.;Yoo, J.H.;Kim, B.S.;Kim, J.K.;Kwon, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1575-1577
    • /
    • 2002
  • In this study, multi layer type OLED(Organic Light Emitting Diode) has been fabricated using $Snq_2$, $Snq_4$, and $Alq_3$ for development of high efficiency, electrical and optical properties of multi layer type OLED investigated. The HTL(Hole Transfer Layer) and EML(Emitting Material Layer) were fabricated by using vacuum evaporation on ITO electrode, and its thickness controlled using thickness monitor. Al was used as a cathode. The electrical and optical properties such as J-V, brightness-V and EL spectrum of OLED device was measured using I.V.L.T system. The result, brightness of $Alq_3$, $Snq_2$ and $Snq_4$ were $3900cd/m^2$, $63cd/m^2$ and $23cd/m^2$ respectively.

  • PDF

Electrochemical Behavior of Mordant Red 19 and its Complexes with Light Lanthanides

  • Sang Kwon Lee;Taek Dong Chung;Song-Ju Lee;Ki-Hyung Chjo;Young Gu Ha;Ki-Won Cha;Hasuck Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.567-574
    • /
    • 1993
  • Mordant Red 19(MR19) is reduced at mercury electrode at -0.67 V vs. Ag/AgCl with two electrons per molecule in pH 9.2 buffer by differential pulse polarography and linear sweep voltammetry. The peak potential is dependent on the pH of solution. The exhaustive electrolysis, however, gives 4 electrons per molecule because of the disproportionation of the unstable hydrazo intermediate. The electrochemical reduction of lanthanide-MR19 complexes is observed at more cathodic potential than that of free ligand. The difference in peak potentials between complex and free ligand varies from 75 mV for $La^{3+}$ to 165 mV for $Tb^{3+}$ and increases with increasing the atomic number of lanthanide. The electrochemical reduction of lanthanide complexes with MR19 is due to the reduction of ligand itself, and it can be potentially useful as an indirect method for the determination of lanthanides. The shape of i-E curves and the scan rate dependence indicates the presence of adsorption and the adsorption was confirmed by potential double-step chronocoulometry and the effect of standing time. Also the surface excess of the adsorbed species and diffusion coefficients are determined. The composition of the complex is determined to be 1 : 2 by spectrophotometric and electrochemical methods.

Characterization of GaN on GaN LED by HVPE method

  • Jung, Se-Gyo;Jeon, Hunsoo;Lee, Gang Seok;Bae, Seon Min;Kim, Kyoung Hwa;Yi, Sam Nyung;Yang, Min;Ahn, Hyung Soo;Yu, Young Moon;Kim, Suck-Whan;Cheon, Seong Hak;Ha, Hong Ju;Sawaki, Nobuhiko
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.128-131
    • /
    • 2012
  • The selective area growth light emitting diode on GaN substrate was grown using mixed-source HVPE method with multi-sliding boat system. The GaN substrate was grown using mixed-source HVPE system. Te-doped AlGaN/AlGaN/Mg-doped AlGaN/Mg-doped GaN multi-layers were grown on the GaN substrate. The appearance of epi-layers and the thickness of the DH was evaluated by SEM measurement. The DH metallization was performed by e-beam evaporator. n-type metal and p-type metal were evaporated Ti/Al and Ni/Au, respectively. At the I-V measurement, the turn-on voltage is 3 V and the differential resistance is 13 Ω. It was found that the SAG-LED grown on GaN substrate using mixed-source HVPE method with multi-sliding boat system could be applied for developing high quality LEDs.

Mechanism of Micro-V Grooving with Single Crystal Diamond Tool (단결정 다이어몬드 공구를 이용한 Micro-V 홈 가공기구)

  • Park D.S.;Seo T.I.;Kim J.K.;Seong E.J.;Han J.Y.;Lee E.S.;Cho M.W.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1223-1227
    • /
    • 2005
  • Fine microgroove is the key component to fabricate micro-grating, micro-grating lens and so on. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. This study deals with the creation of ultra-precision micro grooves using non-rotational diamond tool and CNC machining center. The shaping type machining method proposed in the study allows to produce V-shaped grooves of $40\mu{m}$ in depth with enough dimensional accuracy and surface. For the analysis of machining characteristics in micro V-grooving, three components of cutting forces and AE signal are measured and processed. Experimental results showed that large amplitude of cutting forces and AE appeared at the beginning of every cutting path, and cutting forces had a linear relation with the cross-sectional area of uncut chip thickness. From the results of this study, proposed micro V-grooving technique could be successfully applied to forming the precise optical parts like prism patterns on light guide panel of TFT-LCD.

  • PDF

Conversion Efficiency Enhancement of a-Si:H Thin-Film Solar Cell Using Periodic Patterned Substrate (주기적인 패턴 유리 기판을 사용한 비정질 실리콘 박막 태양전지의 효율 향상에 관한 연구)

  • Son, C.H.;Kim, K.M.;Kim, J.H.;Hong, J.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2012
  • We fabricated a-Si:H thin-film solar cell using the two-dimensional (2D) periodic patterned glass substrate. The use of a 3D periodic texture rather than a randomly texture at surface of TCO can result in higher short circuit current densities ($J_{sc}$). In order to analyze the optical effect of patterning glasses, ray-tracing simulations were performed. Also, p-i-n cells were deposited on patterned glasses as substrate by PECVD. UV-Vis spectroscopy, light I-V measurement were carried out for the optoelectronic characterization. The anti-reflective and light-trapping performance of patterning glass substrate was investigated by a comparison of experimental results with numerical simulations.

Application of OLED as the Integrated Light source for the Portable Lab-On-a-Chip (휴대형 랩온어칩을 위한 집적화 광원으로의 OLED 적용)

  • Kim, Ju-Hwan;Shin, Kyeong-Sik;Kim, Young-Min;Kim, Yong-Kook;Yang, Yeun-Kyeong;Kim, Tae-Song;Kang, Ji-Yoon;Kim, Sang-Sig;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.193-197
    • /
    • 2004
  • The organic light emitting diode (OLED) is proposed as the novel source in the microchip because it has ideal merits (various wavelengths, thin-film structure and overall emitting) for the integration. In this paper, we fabricated the finger-type pin photodiodes for fluorescence detection and the advanced microchip with OLED integrated pn the microchannel. The finger-type in the diode design extended the depletion region and reduced the internal resistance about 31.2% than rectangular-type. The photodiodes had a 100pA leakage current and a 8720 sensitivity $(I_{Light}/I_{Dark})$ at -1 V bias. The interference filter with 32 layers ($SiO_2$, $TiO_2$) was directly deposited on the photodiode. The OLED was fabricated on the ITO coated glass and was bonded with LOC. The application of thin-film OLED increased the excitation efficiency and simplified the integration process extremely. The prototype device of this application had a superior sensitivity of 100nM-LOD in the fluorescence detection.

  • PDF

Effects of an a-C:H Anti-Reflective Coating on the Cell Efficiency of Dye-Sensitized Solar Cells (DSSCs) (수소화된 비정질 탄소 반사방지 코팅층이 염료감응형 태양전지의 효율에 미치는 영향)

  • Song, Jae-Sil;Kim, Nam-Hoon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.281-286
    • /
    • 2019
  • Raman spectra of a-C:H thin films deposited with an unbalanced magnetron sputtering system showed that the G peak shifted to a higher wavenumber as the target power density increased and $I_D/I_G$ ratio increased from 0.902 to 1.012. Moreover, the transmittance of a-C:H films fabricated at 60 nm tended to decrease with increasing target power density; at 550 nm in the visible light region, the transmittance decreased from 69% to 58%. The rms surface roughness values of the a-C:H thin films decreased with increasing target power density, and varied from 1.11 nm to 0.71 nm. In order to achieve efficient light trapping, the light scattering at the rough interface must be enhanced. Consequently, the surface roughness of the thin film will decrease with the target power density. Further, the refractive index and reflectivity of the a-C:H thin films increased with increasing target power density; however, the Brewster angle decreased with the target power density. Hence, dye-sensitized solar cells using an a-C:H antireflective coating increased the CE, $V_{OC}$, and $J_{SC}$ by approximately 8.6%, 5.5%, and 4.5%, respectively.