• Title/Summary/Keyword: Light Emitting Plasma

Search Result 169, Processing Time 0.03 seconds

A Study on the Characteristics of ITO Thin Film for Top Emission OLED (Top Emission OLED를 위한 ITO 박막 특성에 대한 연구)

  • Kim, Dong-Sup;Shin, Sang-Hoon;Cho, Min-Joo;Choi, Dong-Hoon;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.450-450
    • /
    • 2006
  • Organic light-emitting diodes (OLED) as pixels for flat panel displays are being actively pursued because of their relatively simple structure, high brightness, and self-emitting nature [1, 2]. The top-emitting diode structure is preferred because of their geometrical advantage allowing high pixel resolution [3]. To enhance the performance of TOLEDs, it is important to deposit transparent top cathode films, such as transparent conducting oxides (TCOs), which have high transparency as well as low resistance. In this work, we report on investigation of the characteristics of an indium tin oxide (ITO) cathode electrode, which was deposited on organic films by using a radio-frequency magnetron sputtering method, for use in top-emitting organic light emitting diodes (TOLED). The cathode electrode composed of a very thin layer of Mg-Ag and an overlaying ITO film. The Mg-Ag reduces the contact resistivity and plasma damage to the underlying organic layer during the ITO sputtering process. Transfer length method (TLM) patterns were defined by the standard shadow mask for measuring specific contact resistances. The spacing between the TLM pads varied from 30 to $75\;{\mu}m$. The electrical properties of ITO as a function of the deposition and annealing conditions were investigated. The surface roughness as a function of the plasma conditions was determined by Atomic Force Microscopes (AFM).

  • PDF

The Effects of Different Wavelengths of Light-Emitting Diodes on the Expression of Reproduction-Related Genes in Goldfish Carassius auratus

  • Yun, Sung Gyu;Kim, Na Na;Shin, Hyun Suk;Choi, Young Jae;Choi, Ji Yong;Song, Jin Ah;Choi, Cheol Young
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.211-220
    • /
    • 2015
  • We investigated the differences in the expression of the neurohormones kisspeptin (Kiss) and gonadotropin-inhibitory hormone (GnIH) and cytochrome P450 aromatase (P450arom), gonadotropin hormones (GTHs), and sex steroids in the goldfish Carassius auratus exposed to light-emitting diodes (LEDs). The expression levels of Kiss1, Kiss2, G-protein-coupled receptor 54 (GPR54), GTHs, GnIH, and P450arom were compared between the control (white light) and LED-treated goldfish. Furthermore, we measured the plasma levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). The levels of Kiss1 mRNA and protein; Kiss2, GPR54, and $GTH{\alpha}$ protein; GTH mRNA; and plasma FSH and LH in the hypothalamus and cultured hypothalamus cells were significantly higher in the green and purple LED treatment groups than in the other groups. These results suggested that red LEDs inhibit the sex maturation hormones, Kiss, GPR54, GTHs, and P450arom, and that GnIH plays a role in the negative regulation of reproductive function in goldfish.

Electrical Properties of Yellow Emitting OLED (Yellow 발광 OLED의 전기적 특성)

  • Hong, Kyung-Jin;Ki, Hyun-Chol;Min, Yong-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.325-326
    • /
    • 2009
  • We studied the effect of ITO surface treatment by using $O_2$ plasma to enhance the emission efficiency of the Organic Light Emitting Diodes (OLEDs). The luminance efficiency and the operational stability were improved with an ITO anode treated at the optimized conditions.

  • PDF

Display Technologies for Immersive Devices and Electronic Skin (디스플레이 현황과 발전방향 -실감 및 스킨 기기로의 확대)

  • Park, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.10-18
    • /
    • 2019
  • Since the introduction of CRT(Cathode Ray Tube) in the 1950s, display technologies have been developed continuously. Flat panel displays such as PDP(Plasma Display Panel) and LCD(Liquid Crystal Display) were commercialized in the late 1990s, and OLED(Organic Light Emitting Diodes) and Micro-LED(Micro-Light Emitting Diodes) are now being developed and are becoming widespread. In the future, we expect to develop ultra-realistic, flexible, embedded sensor displays. Ultra-realistic display can be applied to AR/VR(Augmented Reality/Virtual Reality) devices and spatial light modulators for holography. The sensor-embedded display can be applied to robots; electronic skin; and security devices, including iris recognition sensors, fingerprint recognition sensors, and tactile sensors. AR/VR technology must be developed to meet technical requirements such as viewing angle, resolution, and refresh rate. Holography requires optical modulation technology that can significantly improve resolution, viewing angle, and modulation method to enable wide-view and high-quality hologram stereoscopic images. For electronic skin, stable mass production technology, large-area arrays, and system integration technologies should be developed.

A Sutdy on Organic Emission Device of Chitosan Used (키토산을 이용한 유기 발광 소자에 관한 연구)

  • Jung, Ki-Taek;Kang, Soo-Jung;Kim, Nam-Ki;Roh, Seung-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1062-1065
    • /
    • 2004
  • The importance of display is becoming increasingly important due to the development of information and industry where it leads to diverse and abundant information in today's society. The demand and application range for FPD(Flat Panel Display), specifically represented by LCD(Liquid Crystal Display) and PDP(Plasma Display Panel), have been rapidly growing for its outstanding performance and convenience amongst many other forms of display. The current focus has been on OLED(Organic Light Emitting Diode) in the mobile form, which has just entered into mass production amid the different types of FPD. Many studies are being conducted in regards to device, vacuum evaporation, encapsulation, and drive circuits with the development of device as a matter of the utmost concern. This study develops a new type of light-emitting materials by synthesizing medical polymer organic chitosan and phosphor material CuS. Chitosan itself satisfies the Pool-Frenkel Effect, an I-V specific curve, with a thin film under $20{mu}m$, and demonstrates production possibility for a living body sensors solely with the thin film. Furthermore, it enables production possibility for EML of organic EL device(Emitting Layer) with liquid Green light emitting and Blue light emitting as a result of synthesis with phosphor material.

  • PDF

Effect of the Plasma-assisted Patterning of the Organic Layers on the Performance of Organic Light-emitting Diodes

  • Hong, Yong-Taek;Yang, Ji-Hoon;Kwak, Jeong-Hun;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.10 no.3
    • /
    • pp.111-116
    • /
    • 2009
  • In this paper, a plasma-assisted patterning method for the organic layers of organic light-emitting diodes (OLEDs) and its effect on the OLED performances are reported. Oxygen plasma was used to etch the organic layers, using the top electrode consisting of lithium fluoride and aluminum as an etching mask. Although the current flow at low voltages increased for the etched OLEDs, there was no significant degradation of the OLED efficiency and lifetime in comparison with the conventional OLEDs. Therefore, this method can be used to reduce the ohmic voltage drop along the common top electrodes by connecting the top electrode with highly conductive bus lines after the common organic layers on the bus lines are etched by plasma. To further analyze the current increase at low voltages, the plasma patterning effect on the OLED performance was investigated by changing the device sizes, especially in one direction, and by changing the etching depth in the vertical direction of the device. It was found that the current flow increase at low voltages was not proportional to the device sizes, indicating that the current flow increase does not come from the leakage current along the etched sides. In the etching depth experiment, the current flow at low voltages did not increase when the etching process was stopped in the middle of the hole transport layer. This means that the current flow increase at low voltages is closely related to the modification of the hole injection layer, and thus, to the modification of the interface between the hole injection layer and the bottom electrode.

A STUDY ON THE SHEAR BOND STRENGTHS OF VISIBLE LIGHT-CURED GLASS IONOMER CEMENT WITH SEVERAL LIGHT-CURING UNITS (수종의 광중합기를 이용한 교정용 광중합형 글라스 아이오노머 시멘트의 전단 결합 강도에 관한 연구)

  • Kim, Min-Soo;You, Seoung-Hoon;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.81-90
    • /
    • 2007
  • The purpose of this study was to assess the effect of light-tip distance on the shear bond strength of a visible light-cured glass ionomer cement(Fuji Ortho LC ; GC, Japan) cured with three different light curing units : a halogen light(Elipar Trilight ; 3M ESPE, Seefeld, Germany), a Light Emitting Diode (LED, Elipar Freelight2 ; 3M ESPE, Seefeld, Germany) and a plasma arc light (Flipo ; LOKKI, France). 1. When used at a distance of 0mm from the bracket, the three light curing units showed no statistically different shear bond strengths. At distance of 3 and 6mm, no significant differences were found between the halogen and plasma arc lights, but both had significantly higher shear bond strengths than the LED light. 2. The halogen light and plasma arc light showed that no significant differences in bond strength were found among the three distances. Using the LED light, a greater light-tip distance produced significantly lower shear bond strengths.

  • PDF

Observation of Discharge Mode Transient from Townsend to Glow at Breakdown of Helium Atmospheric Pressure Dielectric Barrier Discharge (헬륨 대기압 유전체 격벽 방전기의 타운젠트-글로우 방전 모드 전이 연구)

  • Bae, Byeongjun;Kim, Nam-Kyun;Yoon, Sung-Young;Shin, Jun-Seop;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.26-31
    • /
    • 2016
  • The Townsend to glow discharge mode transition was investigated in the dielectric barrier discharge (DBD) helium plasma source which was powered by 20 kHz / $4.5 kV_{rms}$ high voltage at atmospheric pressure. The spatial profile of the electric field strength at each modes was measured by using the intensity ratio method of two helium emission lines (667.8 nm ($3^1D{\rightarrow}2^1P$) and 728.1 nm ($3^1S{\rightarrow}2^1P$)) and the Stark effect. ICCD images were analyzed with consideration for the electric field property. The Townsend discharge (TD) mode at the initial stage of breakdown has the light emission region located in the vicinity of the anode. The electric field of the light emitting region is close to the applied field in the system. Immediately, the light emitting region moves to the cathode and the discharge transits to the glow discharge (GD) mode. This mode transition can be understood with the ionization wave propagation. The electric field of the emitting region of GD near cathode is higher than that of TD near anode because of the cathode fall formation. This observation may apply to designing a DBD process system and to analysis of the process treatment results.

AMOLED Display Technologies and Recent Trends - Focusing on Flexible Display Technology - (AMOLED 디스플레이 주요 기술 및 최근 동향 - 플렉서블 디스플레이 기술 위주로 -)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Advanced Industrial SCIence
    • /
    • v.1 no.1
    • /
    • pp.16-22
    • /
    • 2022
  • Starting with cathode ray tubes, displays are forming markets in the order of active marix organic light emitting diode (AMOLED) after PDP (Plasma Display Panel) and LCD (Liquid Crystal Display). OLED is recognized as a key field for the development of each country preparing for the fourth industrial revolution, and especially Samsung Display and LG Display, which are the top industries in Korea, are leading the market with more than 90% of OLED shares. Currently, AMOLED has moved to the area that can be folded or bent. This technology is possible because TFT (Thin Film Transistor) and OLED may be formed on a flexible substrate. In the future, the technology will move to stretchable displays, and for this, the development of substrate materials is first, and then TFT and OLED devices should also be implemented with stretchable materials.