• Title/Summary/Keyword: Light Absorption Analysis

Search Result 228, Processing Time 0.027 seconds

Theoretical Modeling of the Internal Power Flow and Absorption Loss of the Air Mode Based on the Proposed Poynting Vector Analysis in Top-emitting Organic Light-emitting Diodes

  • Kim, Jiyong;Kim, Jungho;Kim, Kyoung-Youm
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1663-1674
    • /
    • 2018
  • We propose the Poynting vector analysis of the air mode in a top-emitting organic light-emitting diode (OLED) by combining the transfer matrix method and dipole source term. The spatial profiles of the time-averaged optical power flow of the air mode are calculated inside and outside the multilayer structure of the OLED with respect to the thickness of the semi-transparent top cathode and capping layer (CPL). We elucidate how the micro-cavity effect controlled by the thickness variation of the semi-transparent top cathode or CPL affects the internal optical power and absorption loss inside the OLED multilayer and the external optical power coupled into the air. When the calculated absorption loss and external power obtained by the proposed Poynting vector and currently-used point dipole models are compared, two calculation results are identical, which demonstrates the validity of the two models.

A Compact Optical System using LED and CMOS Image Sensor for Liver Function Analysis (LED와 CMOS 이미지 센서 기반 간 기능 분석용 소형 광학장치)

  • Kim, Chul;Lim, Chang-Jin;Nam, Myung-Hyun;Kim, Dong-Sik;Seo, Sung-Kyu;Pak, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.270-275
    • /
    • 2012
  • This paper presents a portable and compact optical device which can conveniently be used to perform a functional analysis of human liver function. The proposed system employed red/green LEDs, as a light source, and CMOS image sensor, which is commonly used in cellular phones. With this system, several blood serum samples have been evaluated for liver functional analysis by measuring light absorption level through the blood serum samples depending on aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin concentration. The light absorption through the blood serum samples containing AST, ALT, or total bilirubin can provide their concentrations. The green light absorption is more sensitive to the concentration of AST or ALT, and the red light absorption is more sensitive to the total bilirubuin concentration. Additional calibration steps were performed by using a MATLAB program in order to eliminate the light scattering effects from the extraneous particles existing in each blood serum sample. From the blind test, three standard light intensity curves through each enzyme have been obtained and the enzyme concentration values have been compared to those obtained from a commercially available biochemistry analyzer (Toshiba 200 FR). The average percent difference in the obtained concentrations from two systems for AST, ALT, and total bilirubin concentration came out to be 7.79%, 7.98%. and 7.56%, respectively, with the adjusted coefficient of determination (R2) higher than 0.98. This system can possibly lead to a low-cost and simple system that can be used as a point-of-care (POC) system in a condition without advanced equipments.

Enhanced Photocatalytic Properties of Visible Light Responsive La/TiO2-Graphene Composites for the Removal of Rhodamin B in Water

  • Areerob, Yonrapach;Oh, Won-Chun
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.168-178
    • /
    • 2017
  • $La/TiO_2$ - graphene composites were synthesized in this study, and applied to the photocatalytic degradation of Rhodamine B (RhB) under UV-visible light irradiation. X-ray diffraction (XRD), surface analysis, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) analysis demonstrated that $La/TiO_2$ nanoparticles were well distributed on the surface of graphene, and formed the heterostructure of $La/TiO_2$-graphene. Compared to the pure $TiO_2$, $La/TiO_2$-graphene composites displayed much higher photocatalytic activities in RhB degradation under UV-visible light irradiation. The photocatalytic data of $La/TiO_2$-graphene composites exhibit extended light absorption in the visible light region, and possess better charge separation capability than that of pure $TiO_2$. The high photocatalytic activity was attributed to the composite's high adsorptivity, extended light absorption, and increased charge separation efficiency, due to the excellent electrical properties of graphene, and the large surface contact between graphene and $La/TiO_2$ nanoparticles.

Characterization of fine particulate matter during summer at an urban site in Gwangju using chemical, optical, and spectroscopic methods (화학적·광학적·분광학적 방법을 이용한 광주 도심지역 여름철 초미세먼지의 특성)

  • Son, Se-Chang;Park, Tae-Eon;Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.91-106
    • /
    • 2021
  • Daily PM2.5 was collected during summer period in 2020 in Gwangju to investigate its chemical and light absorption properties. In addition, real-time light absorption coefficients were observed using a dual-spot 7-wavelength aethalometer. During the study period, SO42- was the most important contributor to PM2.5, accounting for on average 33% (10-64%) of PM2.5. The chemical form of SO42- was appeared to be combination of 70% (NH4)2SO4 and 30% NH4HSO4. Concentration-weighted trajectory (CWT) analysis indicated that SO42- particles were dominated by local pollution, rather than regional transport from China. A combination of aethalometer-based and water-extracted brown carbon (BrC) absorption indicated that light absorption of BrC due to aerosol particles was 1.6 times higher than that due to water-soluble BrC, but the opposite result was found in absorption Ångström exponent (AAE) values. Lower AAE value by aerosol BrC particles was due to the light absorption of aerosol BrC by both water-soluble and insoluble organic aerosols. The BrC light absorption was also influenced by both primary sources (e.g., traffic and biomass burning emissions) and secondary organic aerosol formation. Finally the ATR-FTIR analysis confirmed the presence of NH4+, C-H groups, SO42-, and HSO42-. The presence of HSO42- supports the result of the estimated composition ratio of inorganic sulfate ((NH4)2SO4) and bisulfate (NH4HSO4).

Analysis of the Light Environment in Model Greenhouse using Infrared Absorption Film as Shading Screen (적외선 흡수필름을 차광재로 사용한 모형 온실의 광환경 분석(농업시설))

  • 권혁진;김기성;김문기
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.340-345
    • /
    • 2000
  • This study was carried out to analyze the light and thermal environment in model greenhouse using infrared absorption film as shading screen and to compare with the case of no shading and using general shading screen such as aluminum foil-backed film, black polyethylene film and thermal blanket. PPFD(photosynthetic photon flux density) of inside the model greenhouse under infrared absorption film was increased by 22% than under general shading screen on the average. And temperature of inside air under infrared absorption film was 2$^{\circ}C$ lower than under general shading screen on the average. So, it is expected that infrared absorption film is useful as shading screen.

  • PDF

Acoustic Study of light weight insulation system on Dash using SEA technique (SEA 기법을 이용한 저중량 대시판넬 흡,차음재 성능에 대한 연구)

  • Lim, Hyo-Suk;Park, Kwang-Seo;Kim, Young-Ho;Kim, In-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper Statistical Energy Analysis has been considered to predict high frequency air borne interior noise. Dash panel Insulation is major part to reduce engine excitation noise. Transmission loss and absorption coefficient are considered to predict dash insulation performance. Transmission lose is derived from coupling loss factor and absorption coefficient is derived from internal damping loss factor. Material Biot properties were used to calculate each loss factors. Insulation geometry thickness distribution was hard to measure, so FeGate software was used to calculate thickness map from CAD drawing. Each predicted transmission losses between conventional insulation and light weight insulation were compared with SEA. Transmission loss measurement was performed to validate each prediction result, and it showed good correlation between prediction and measurement. Finally interior noise prediction was performed and result showed light weight insulation system can reduce 40% weight to keep similar performance with conventional insulation system, even though light weigh insulation system has lower sound transmission loss and higher absorption coefficient than conventional system.

  • PDF

Oil Spill Detection Mechanism using Single-wavelength LED and CCD (단일 파장의 LED와 CCD를 이용한 유출유 탐지방법)

  • Oh, Sangwoo;Lee, Moonjin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • In this study, a new optical method for oil detection using an analysis the light-absorption image of separate oil-water mixture with a LED illumination is described. To obtain an information about the presence of oil on water and the thickness of oil, the intensity of light-absorption images acquired through CCD is analyzed. To select the optimal wavelength of the light source, the experiment is conducted using several LEDs having four different wavelength. In the case of using a blue LED having 465 nm wavelength, an intensity decreasing tendency of light-absorption image is obvious and clear. To identify the applicability of sensing system at the real sea condition, experiments are conducted as varying the brightness and water surface angle. Through this research, new optical oil detection methodology is proposed using the absorption difference between water and oil with single-wavelength LED and CCD.

Oil Thickness Measurement by Light Absorption Analysis (흡광 광도 분석법을 이용한 기름의 두께 측정 연구)

  • Oh, Sangwoo;Lee, Moonjin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.263-267
    • /
    • 2013
  • In this research, a novel optical measuring methodology for the measurement of oil thickness in seawater is suggested by evaluating the light absorption which is occurred in the process of penetrating through oil layer on seawater. Laser having monochromatic wave is used as a light source and photodiode which can convert the intensity of the light into an electrical signal is applied to measure the intensity of the penetrating light through the oil-water mixtures. In the experiment, bunker C and lubricating oil are used, and three different lasers having different wavelengths are applied and compared for the selection of an optimal light source. As a result, it is observed that in the case of blue laser, the intensity of the light on the optical sensor decreases with an increase in the oil thickness. Through this relation, both the presence of oil and the thickness of oil can be determined.

Analysis on the Luminous Efficiency of Phosphor-Conversion White Light-Emitting Diode

  • Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.22-26
    • /
    • 2013
  • The author analyzes the luminous efficiency of the phosphor-conversion white light-emitting diode (LED) that consists of a blue LED chip and a yellow phosphor. A theoretical model is derived to find the relation between luminous efficiency (LE) of a white LED, wall-plug efficiency (WPE) of a blue LED chip, and the phosphor absorption ratio of blue light. The presented model enables to obtain the theoretical limit of LE and the lower bound of WPE. When the efficiency model is applied to the measured results of a phosphor-conversion white LED, the limit theoretical value of LE is obtained to be 261 lm/W. In addition, for LE of 88 lm/W at 350 mA, the lower bound of WPE in the blue LED chip is found to be ~34%. The phosphor absorption ratio of blue light was found to have an important role in optimizing the luminous efficiency and colorimetric properties of phosphor-conversion white LEDs.

Preparation of Biodegradable Oil Gelling Agent and Biodegradation Characteristics by Enzyme (생분해성 유류고형화제의 제조와 효소에 의한 생분해 특성)

  • Kim Jung-Du;Yoo Su-Yong;Lee Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.973-978
    • /
    • 2005
  • Biodegradable oil gelling agent was prepared, and their oil absorption capacities using light oil, lubricant oil and corn oil were investigated. The result showed that the oil absorption capacity was depended on the amount of surfactant and starch added, and was increased in the order of light oil, lubricant oil and corn oil. Also, the oil-absorption capacity was saturated within 30 min at $18^{\circ}C$. The biodegradability of the prepared biodegradable oil gelling agent was also studied by determination of reduced sugar produced after enzymatic hydrolysis. Their surface morphologies and thermal properties of the prepared biodegradable oil gelling agent were observed by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), respectively.