Browse > Article
http://dx.doi.org/10.5012/jkcs.2017.61.4.168

Enhanced Photocatalytic Properties of Visible Light Responsive La/TiO2-Graphene Composites for the Removal of Rhodamin B in Water  

Areerob, Yonrapach (Department of Advanced Materials Science & Engineering, Hanseo University)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Abstract
$La/TiO_2$ - graphene composites were synthesized in this study, and applied to the photocatalytic degradation of Rhodamine B (RhB) under UV-visible light irradiation. X-ray diffraction (XRD), surface analysis, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) analysis demonstrated that $La/TiO_2$ nanoparticles were well distributed on the surface of graphene, and formed the heterostructure of $La/TiO_2$-graphene. Compared to the pure $TiO_2$, $La/TiO_2$-graphene composites displayed much higher photocatalytic activities in RhB degradation under UV-visible light irradiation. The photocatalytic data of $La/TiO_2$-graphene composites exhibit extended light absorption in the visible light region, and possess better charge separation capability than that of pure $TiO_2$. The high photocatalytic activity was attributed to the composite's high adsorptivity, extended light absorption, and increased charge separation efficiency, due to the excellent electrical properties of graphene, and the large surface contact between graphene and $La/TiO_2$ nanoparticles.
Keywords
$La/TiO_2$; Photocatalyst; Rhodamine B; Absorption; Dye degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Bioresour. Technol. 2001, 77, 247.   DOI
2 Kobylewski, S.; Jacobson, M. F. Food Dyes: A Rainbow of Risks; Center for Science in The Public Interest: Washington, DC, 2010.
3 OECD, Emission Scenario Document on Textile Finishing Industry Europe, OECD, Paris, 2004, 77.
4 Leary, R.; Westwood, A. Carbon. 2011, 49, 741.   DOI
5 Lavanyaa, T.; Duttab, M.; Ramaprabhua, S.; Satheeshc, K. J. Environ. Chem. Eng. 2017, 5, 494.   DOI
6 Yadav, H. M.; Kim, J. S. J. Alloys Compd. 2016, 688, 123.   DOI
7 Meng, F.; Hong, Z.; Arndt, J., Li, M.; Zhi, Mi.; Yang, F.; Wu, N. Nano Res. 2012, 5, 213.   DOI
8 Liu, L.; Luo, C.; Xiong, J.; Yang, Z.; Zhang, Y.; Cai, Y.; Gu, H. J. Alloys Compd, 2017, 690, 771.   DOI
9 Wang, J.; Tafen, D. N., Lewis, J.P.; Hong, Z.; Manivannan A.; Zhi, M.; Li, M.; Wu, N. J. Am. Chem. Soc. 2009, 131, 12290.   DOI
10 Minella, M.; Sordello F.; Minero, C. Catal. Today. 2017, 281, 29.   DOI
11 Ilyas, A. M.; Gondal, M. A.; Baig, Umair.; Akhtar, S.; Yamani, Z. H. Sol. Energy. 2016, 137, 246.   DOI
12 Zargari, S.; Rahimi, R.; Ghaffarinejad, A.; Morsali, A. J. Colloid Interface Sci. 2016, 466, 310.   DOI
13 Yang, Y.; Li, Y.; Wang, J.; Wu, J.; He, D.; Qier, A. J. Alloys Compd. 2017, 699, 47.   DOI
14 Laia, C.; Wanga, M. M.; Zenga, G. M.; Liua, Y. G. Appl. Surf. Sci. 2016, 390, 368.   DOI
15 Wang, M.; Cai, L.; Jin, Q. Sep. Purif. Technol. 2017, 172, 217.   DOI
16 Sima, L. C., Leong, K. H.; Saravanan, P.; Ibrahim, S. Appl. Surf. Sci. 2016, 358, 122.
17 Ghasemia, S.; Hashemian, S. J.; Alamolhoda, A. A.; Gocheva, I.; Setayesh, S. R. Mater. Res. Bull. 2017, 87, 40.   DOI
18 Bera, S.; Pal, M.; Naskar, A.; Jana, S. J. Alloys Compd. 2016, 669, 177.   DOI
19 Tan L. L.; Ong, W. J., Chai, S. P.; Mohamed, A. R. Chem. Eng. J. 2017, 308, 248.   DOI
20 Lin, L.; Wang, H.; Xu, P. Chem. Eng. J. 2017, 310, 389.   DOI
21 Cao, S.; Liu, T.; Tsang, Y.; Chena, C. Appl. Surf. Sci. 2016, 382, 225.   DOI
22 Saleem, H.; Habib, J. Alloys Compd. 2016, 679, 177.   DOI
23 Qin, L.; Liang, S.; Tan, X.; Pan, A. J. Alloys Compd. 2017, 692, 124.   DOI
24 Xie, Y.; Song, J.; Zhou, P.; Ling, Y.; Wu, Y. Electrochim. Acta. 2016, 210, 358.   DOI
25 Raza, W.; Haque, M. M.; Muneer, M.; Fleisch, M.; Hakki, A.; Bahnemann, D. J. Alloys Compd. 2015, 632, 837.   DOI
26 Luan, X.; Chen, L.; Zhang, J.; Qu, G.; Flake, J. C.; Wang, Y. Electrochim. Acta. 2013, 111, 216.   DOI
27 Zhang, J. J.; Liu, X.; Ye, T.; Zheng, G. P.; Zheng, X.; Liu, P.; Guan, X. X. J. Alloys Compd. 2017, 698, 819.   DOI
28 Zhang, Y.; Hou, X.; Sun, T.; Zhao, X. Ceram. Int. 2017, 43, 1150.   DOI
29 Xu, W.; Xie, W.; Huang, X.; Chen, X.; Huang, N.; Wang, X.; Liu, J. Food Chem. 2017, 221, 267.   DOI
30 Khannam, M.; Boruah, R.; Doluia S. K. J. Photochem. Photobiol. A Chemistry. 2017, 335, 248.   DOI
31 Yan, W. Y.; Zhou, Q.; Chena, X.; Yang, Y.; Zhang, Y.; Huang, X. J.; Wu, Y. C. J. Hazard. Mater. 2016, 314, 41.   DOI
32 Yang, W. D.; Li, Y. R.; Lee, Y. C. Appl. Surf. Sci. 2016, 380, 249.   DOI
33 Kim, J. H.; Choi, W.; Jung, H. G.; Oh, S. H.; Chung, K. Y. J. Alloys Compd. 2017, 690, 390.   DOI
34 Li, X.; Zhao, Y.; Wang, X.; Wang, J.; Gaskov A. M.; Akbar, S. A. Sens. Actuators B. 2016, 230, 330.   DOI
35 Li, X.; Zhang, X.; Wang, R.; Su, Z.; Sha, J.; Liu, P. J. Power Sources. 2016, 336, 298.   DOI
36 Qu, A.; Xie, H.; Xu, Xi.; Zhang, Y.; Wen, S.; Cui, Y. Appl. Surf. Sci. 2016, 375, 230.   DOI
37 Zhang, J.; Liu, X.; Ye, T.; Zheng, G.; Zheng, X. C.; Liu, P.; Guan, X. X. J. Alloys Compd. 2017, 698, 819.   DOI
38 Biris, A. R.; Toloman, D.; Popa, A.; Lazar, M. D. Physica E. 2016, 81, 326.   DOI
39 Chen, J.; Shu, J.; Anqi, Z.; Juyuan, H.; Yan, Z.; Chen, J. Diamond Relat. Mater. 2016, 70, 137.   DOI
40 Aparicio, J. R.; Samaniego, J. E.; Ramirez, B. R. Sol. Energy. 2016, 139, 258.   DOI
41 Zhang, W.; Xiao, X.; Zeng, X.; Li, Y.; Zheng, L.; Wan, C. J. Alloys Compd. 2017, 685, 774.
42 Yang, L.; Li, Z.; Jiang, H.; Jiang, W.; Su, R.; Luo, S.; Luo Y. Appl. Catal., B. 2016, 183, 75.   DOI
43 Rauf, M. A.; Salman, S. Chem. Eng. J. 2009, 151, 10.   DOI
44 Prabhakarrao, N.; M. Chandra, R.; Rao, T. S. J. Alloys Compd. 2017, 694, 596.   DOI
45 Wang, W.; Yu, J.; Xiang, Q.; Bei, C. Appl. Catal., B. 2012, 119, 109.
46 Zhou, Y.; Wu, Y.; Li, Y.; Liu, Y.; Yang, L. Ceram. Int. 2016, 42, 12482.   DOI
47 Ghasemia, S.; Esfandiar, A.; Setayesh, S. R.; Yangjehc, A. H. A.; zad, I.; Gholamia, M. R. Appl. Catal., A. 2013, 462, 82.