• 제목/요약/키워드: Ligand-receptor

검색결과 700건 처리시간 0.043초

백서 치주인대세포에서 Doxycycline에 의한 mRANKL 발현 억제 (Inhibition of mRANKL Expression by Doxycycline in Rat Periodontal Ligament Cells)

  • 조관표;최득철;김영준
    • Journal of Periodontal and Implant Science
    • /
    • 제36권2호
    • /
    • pp.335-344
    • /
    • 2006
  • Osteoblast or bone marrow stromal cell-derived RANKL is the major effector molecule essential for osteoclastogenesis. Previous studies have shown that tetracyclines have beneficial therapeutic effects in the prevention and treatment of inflammatory bone disease including periodontal disease. Periodontal ligament cells are thought not only to play an important role in the progression of periodontal disease, but to play an important role in alveolar bone remodeling. Previous studies indicated that receptor activation of nuclear factor $\kappa\;B$ ligand (RANKL) and osteoprotegerin (OPG) are expressed in periodontal ligament cells by pro-inflammatory cytokine, such as $IL-1{\beta}$ and $TNF-{\alpha}$. This study was designed to investigate the inhibitory effect of doxycycline on RANKL and OPG mRNA in rat periodontal ligament cells induced by $IL-1{\beta}$ (1 ng/ml). The results are as follows; 1. MTT assay showed that doxycycline at the concentration of $1-50\;{\mu}g/m{\ell}$ didn't result in statistically significant cell death at day 1 and 3. 2. RANKL mRNA expression was increased to 2.6 folds by $IL-1{\beta}$. When cells were treated with doxycycline ($50{\mu}g/m{\ell}$), $IL-1{\beta}$ -induced mRANKL expression was reduced by 33%. In contrast to RANKL, OPG mRNA expression was not inhibited by pre-treatment with doxycycline. These results suggest that doxycycline decrease the expression of mRANKL resulting in regulation of osteoclastogenesisp in rat periodontal ligament cells.

Transferrin-Conjugated Liposome/IL-12 pDNA Complexes for Cancer Gene Therapy in Mice

  • Joo, Soo-Yeon;Kim, Jin-Seok;Park, Heon-Joo;Choi, Eun-Kyung
    • Macromolecular Research
    • /
    • 제13권4호
    • /
    • pp.293-296
    • /
    • 2005
  • Transferrin ($T_{f}$) has been used as a targeting ligand for delivering liposome/interleukin-12 (IL-12) pDNA complexes to cancer cells mostly due to the greater number of transferrin receptors ($T_{f}R$) found on tumor cells than on normal cells. $T_{f}$ was conjugated to liposomes via the reaction of MPB-PE with thiol groups of $T_{f}$ introduced by a heterobifunctional cross-linking agent, N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP). Four days after C26 inoculation when the tumor volume reached ${\sim}100mm^{3}$, tumor-bearing Balb/c mice were injected intravenously with $T_{f}-liposome/IL-12 pDNA$complexes twice a week for 3 weeks. Significant suppression of tumor growth was achieved in the group treated with the $T_{f}-liposome/IL-12 pDNA$ complexes, with a dose of $10{\mu}g$ of IL-12 pDNA showing the highest suppression effect among the tested doses. Similar results were obtained when the therapy was initiated one day after tumor inoculation, although in this case $30{\mu}g$ IL-12 pDNA/$T_{f}-liposome$ complexes showed a significant suppression of tumor growth between 19 and 23 days after tumor inoculation. This result indicates that the transferrin receptor-targeted liposomal system is an efficient delivery agent of therapeutic genes, such as IL-12, in mice and that its potential clinical use warrants further research investigation.

염기성 올리고펩티드 유도체를 가진 고분자 리피드의 합성 및 유전자 전달 효과 연구 (Synthesis of Polymerizable Amphiphiles with Basic Oligopeptides for Gene Delivery Application)

  • 배선주;최혜;최준식
    • 폴리머
    • /
    • 제37권1호
    • /
    • pp.94-99
    • /
    • 2013
  • 폴리디아세틸렌(polydiacetylene, PDA)은 자기조립된 디아세틸렌(diacetylene) 단량체의 광중합에 의해 만들어진다. 디아세틸렌 단량체들이 조직적으로 배열되면 254 nm의 자외선 노광에 의해 1,4-첨가 중합이 일어나 고분자 주사슬에 이중결합과 삼중결합이 교대로 존재하는 폴리디아세틸렌이 만들어진다. 폴리디아세틸렌 수용액은 일반적으로 약 640 nm에서 최대흡수파장을 지니는 청색을 띠게 되며 여기에 온도나 pH의 변화, 다른 물질의 결합 등 외부 자극에 의해 약 550 nm의 최대 흡수 파장을 띠는 적색으로 색 전이가 일어나게 된다. 본 연구에서, 우리는 고체상 펩티드 합성을 이용하여 PCDA(10,12-pentacosadyinoic acid) 리포좀의 표면에 양이온성 올리고펩티드를 도입하였다. 또한 다양한 몰 비율로 리포좀 수용액을 제조하여 동물 세포에 트랜스펙션한 결과, 향상된 유전자 전달 효율과 낮은 독성을 보이는 것을 확인하였고, PCDA의 특성을 이용하여 세포에 처리 후 세포 관련 비표지 형광을 관찰하였다.

The Role of the Hydrophobic Group on Ring A of Chalcones in the Inhibition of Interleukin-5

  • Yang, Hyun-Mo;Shin, Hye-Rim;Cho, Soo-Hyun;Song, Gyu-Yong;Lee, In-Jeong;Kim, Mi-Kyeong;Lee, Seung-Ho;Ryu, Jae-Chun;Kim, Young-Soo;Jung, Sang-Hun
    • Archives of Pharmacal Research
    • /
    • 제29권11호
    • /
    • pp.969-976
    • /
    • 2006
  • Novel chalcones were found as potent inhibitors of interleukin-5 (II-5). 1-(6-Benzyloxy-2-hydroxyphenyl)-3-(4-hydroxyphenyl)propenone (2a, 78.8% inhibition at $50\;{\mu}M,\;IC_{50}=25.3\;{\mu}M$) was initially identified as a potent inhibitor of IL-5. This activity is comparable to that of budesonide or sophoricoside (1a). The benzyloxy group appears to be critical for the enhancement of the IL-5 inhibitory activity. To identify the role of this hydrophobic moiety, cyclohexyloxy (2d), cyclohexylmethoxy (2c), cyclohexylethoxy (2e), cyclohexylpropoxy (2f), 2-methylpropoxy (2g), 3-methylbutoxy (2h), 4-methylpentoxy (2i), and 2-ethylbutoxy (2j) analogs were prepared and tested for their effects on IL-5 bioactivity. Compounds 2c ($IC_{50}=12.6\;{\mu}M$), 2d ($IC_{50}=12.2\;{\mu}M$), and 2i ($IC_{50}=12.3\;{\mu}M$) exhibited the most potent activity. Considering the cLog P values of 2, the alkoxy group contributes to the cell permeability of 2 for the enhancement of activity, rather than playing a role in ligand motif binding to the receptor. The optimum alkoxy group in ring A of 2 should be one that provides the cLog P of 2 in the range of 4.22 to 4.67.

골쇄보가 RANKL에 의해 유도되는 파골세포의 분화에 미치는 영향 (Effect of Drynariae Rhizoma in RANKL-induced Osteoclast Differentiation)

  • 곽성철;문서영;곽한복;전병훈;오재민;최민규;김정중;장성조
    • 동의생리병리학회지
    • /
    • 제26권4호
    • /
    • pp.506-510
    • /
    • 2012
  • Bone homeostasis is regulated by the balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoporosis, rheumatoid arthritis and periodontal disease are related with up-regulated osteoclast formation and its activity. Gol-Swae-Bo(Drynariae Rhizoma) is widely used on skeletal disease. In this study, we sought to examine the effect of Drynariae Rhizoma in RANKL-induced osteoclast differentiation. The extract of Drynariae Rhizoma inhibited RANKL-induced osteoclast differentiation in a dose dependent manner without cytotoxicity. receptor activator of nuclear factor-${\kappa}B$ ligand(RANKL) mediated $I{\kappa}B$ degradation in bone marrow macrophages(BMMs). However, the extract of Drynariae Rhizoma inhibited RANKL induced $I{\kappa}B$ degradation in BMMs. And mRNA expression of OSCAR, TRAP, c-Fos and NFATc1 was suppressed by the extract of Drynariae Rhizoma. Moreover, the extract of Drynariae Rhizoma inhibited the protein expression of NFATc1 and c-Fos induced by RANKL. After all the analysis, these results suggest that Drynariae Rhizoma may be good candidate of medicine in the treatment of bone-related disease.

파골세포의 골 흡수에 미치는 녹용의 억제효과 (Inhibitory Effect of Deer Antler on Osteoclastic Bone Resorption)

  • 김윤경;최윤홍;송정훈;장성조;김현정;이창훈;안선호;이지은;김정중;최민규
    • 동의생리병리학회지
    • /
    • 제23권6호
    • /
    • pp.1299-1304
    • /
    • 2009
  • We have previously shown that water extract of deer antler (WEDA) inhibited RANKL-mediated osteoclast differentiation from bone marrow macrophages by suppressing c-Fos and NFATc1 expression. Thus, we examined the effect of WEDA in inflammation-induced bone loss in vivo. Here we found that WEDA inhibited osteoblast-supported osteoclast differentiation induced by lipopolysaccharide (LPS). However, WEDA did not suppress the expression of receptor activator of NF-${\kappa}B$ ligand (RANKL) in response to LPS in osteoblasts. WEDA also inhibited the bone resorptive activity of mature osteoclasts. To examine the effect of WEDA on bone loss, when LPS injected subcutaneously in mice, bone loss was greatly increased, but WEDA treatment inhibited LPS-mediated bone loss. Taken together, we conclude that WEDA inhibited osteoclast differentiation and bone resorption in vitro and in vivo. Thus WEDA may be useful in the treatment of bone-related disorders.

The Stimulation of CD147 Induces MMP-9 Expression through ERK and NF-${\kappa}B$ in Macrophages: Implication for Atherosclerosis

  • Kim, Ju-Young;Kim, Won-Jung;Kim, Ho;Suk, Kyoung-Ho;Lee, Won-Ha
    • IMMUNE NETWORK
    • /
    • 제9권3호
    • /
    • pp.90-97
    • /
    • 2009
  • Background: CD147, as a cellular receptor for cyclophilin A (CypA), is a multifunctional protein involved in tumor invasion, inflammation, tissue remodeling, neural function, and reproduction. Recent observations showing the expression of CD147 in leukocytes indicate that this molecule may have roles in inflammation. Methods: In order to investigate the role of CD147 and its ligand in the pathogenesis of atherosclerosis, human atherosclerotic plaques were analyzed for the expression pattern of CD147 and CypA. The cellular responses and signaling molecules activated by the stimulation of CD147 were then investigated in the human macrophage cell line, THP-1, which expresses high basal level of CD147 on the cell surface. Results: Staining of both CD147 and CypA was detected in endothelial cell layers facing the lumen and macrophage-rich areas. Stimulation of CD147 with its specific monoclonal antibody induced the expression of matrix metalloproteinase (MMP)-9 in THP-1 cells and it was suppressed by inhibitors of both ERK and NF-${\kappa}B$. Accordingly, the stimulation of CD147 was observed to induce phosphorylation of ERK, phosphorylation-associated degradation of $I{\kappa}B$, and nuclear translocation of NF-${\kappa}B$ p65 and p50 subunits. Conclusion: These results suggest that CD147 mediates the inflammatory activation of macrophages that leads to the induction of MMP-9 expression, which could play a role in the pathogenesis of inflammatory diseases such as atherosclerosis.

Lactobacillus fermentum으로 발효한 쌍화탕의 파골 세포 분화와 난소 적출한 랫트의 골다공증에 미치는 영향 (Effect of Ssangwha-tang Fermented by Lactobacillus fermentum on Osteoclast Differentiation and Osteoporosis of Ovariectomized Rats)

  • 심기석;이지혜;이재훈;마진열
    • 한국한의학연구원논문집
    • /
    • 제16권1호
    • /
    • pp.149-155
    • /
    • 2010
  • Objective : Ssangwha-tang is a traditional medicine formula widely prescribed for a decrease of fatigue after an illness in Korea. The aim of this study is to investigate the effect of Ssangwha-tang fermented by Lactobacillus fermentum (SF) on osteoclast differentiation in vitro and on bone metabolism of an ovariectomized rat in vivo. Methods : Tartrate-resistant acid phosphatase activity and staining were applied to evaluate the formation of osteoclasts. Ovariectomized rats were orally administrated with SF (30 ml/kg/day) for 12 weeks. Serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, triglyceride, phosphate, calcium levels were determined. Effect of SF on bone loss were studied by histological analysis and the measurement of bone mineral density. Results : SF significantly inhibited tartrate-resistant acid phosphatase activity and formation of osteoclasts in RAW264.7 cells stimulated by receptor activator for nuclear factor ${\kappa}B$ (NF-${\kappa}B$) ligand (RANKL). In addition, SF significantly decreased the level of triglyceride and increased the level of low-density lipoprotein. Moreover, the decrease of trabeculae of the femur was partially prevented in ovariectomized rats administrated with SF. Conclusions : SF treatment could prevent ovariectomy induced bone loss and its effects could be medicated by the inhibition of osteoclastogenesis.

생물학적 자극 통제 수단으로서 활용하기 위한 돼지 페로몬성 냄새 물질의 탐색: I. 5$\alpha$-androst-16-en-3-one 유사체들의 리간드에 기초한 분자 유사성과 물리화학 파라미터 (The Search of fig Pheromonal Odorants for Biostimulation Control System Technologies: I. Ligand Based Molecular Shape Similarity of 5$\alpha$-androst-16-en-3-one Analogous and Their Physicochemical Parameters)

  • 성낙도;김철호;진동일;박창식
    • Reproductive and Developmental Biology
    • /
    • 제28권1호
    • /
    • pp.45-52
    • /
    • 2004
  • To search a new porcine pheromonal odorants, this research for biostimulation and role of pheromone was augmented by means of "control system technologies" to offer a potentially useful and practical way to improve reproductive efficiency in livestock species. Therefore the 13 physicochemical parameters such as similarity indice (S), hydrophobicity (logP) and van der Waals molecule volume (MV) etc. of 54 steroid analogues, which are analogous of substrate molecules, 5$\alpha$-androst-16-en-3-one (P1) and 5$\alpha$-androst-16-en-3-ol (P2) of lipocalin as receptor of pig pheromones were calculated and discussed. The physicochemical properties of these steroid analogues were mainly followed by steric dissimilar of A and D ring in steroid nucleus. And we found that from correlation with S values and MV constants of molecules, the more MV constants are small, the more S values tend to approach 1. Based on this results, the S-values of 4-androsten-3,17-dione (P1-1) and 5 $\alpha$ -androstan-3-one (P2-1) were 1.0, respectively. The two compounds of them were chosen because they showed the same value each other at a side of hydrophobicity, molar refractivity and molecular volume. It is expected that the new two compounds will be able to substitute for P1 and P2, porcine pheromonal odorants.

Multiple Signaling Molecules are Involved in Expression of CCL2 and IL-$1{\beta}$ in Response to FSL-1, a Toll-Like Receptor 6 Agonist, in Macrophages

  • Won, Keunsoo;Kim, Sun-Mi;Lee, Sae-A;Rhim, Byung-Yong;Eo, Seong-Kug;Kim, Koanhoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권6호
    • /
    • pp.447-453
    • /
    • 2012
  • TLR6 forms a heterodimer with TLR2 and TLR4. While proinflammatory roles of TLR2 and TLR4 are well documented, the role of TLR6 in inflammation is poorly understood. In order to understand mechanisms of action of TLR6 in inflammatory responses, we investigated the effects of FSL-1, the TLR6 ligand, on expression of chemokine CCL2 and cytokine IL-$1{\beta}$ and determined cellular factors involved in FSL-1-mediated expression of CCL2 and IL-$1{\beta}$ in mononuclear cells. Exposure of human monocytic leukemia THP-1 cells to FSL-1 resulted not only in enhanced secretion of CCL2 and IL-$1{\beta}$, but also profound induction of their gene transcripts. Expression of CCL2 was abrogated by treatment with OxPAPC, a TLR-2/4 inhibitor, while treatment with OxPAPC resulted in partially inhibited expression of IL-$1{\beta}$. Treatment with FSL-1 resulted in enhanced phosphorylation of Akt and mitogen-activated protein kinases and activation of protein kinase C. Treatment with pharmacological inhibitors, including SB202190, SP6001250, U0126, Akt inhibitor IV, LY294002, GF109203X, and RO318220 resulted in significantly attenuated FSL-1-mediated upregulation of CCL2 and IL-$1{\beta}$. Our results indicate that activation of TLR6 will trigger inflammatory responses by upregulating expression of CCL2 and IL-$1{\beta}$ via TLR-2/4, protein kinase C, PI3K-Akt, and mitogen-activated protein kinases.