• Title/Summary/Keyword: Lifting planning

Search Result 34, Processing Time 0.024 seconds

Lifting Work Process Optimization Method in High-rise Building Construction Through Improvement of CYCLONE Modeling Method (CYCLONE 모델링 기법 개선을 통한 초고층 공사의 자재 양중 작업 프로세스 최적화 연구)

  • Hawng, Doowon;Kwon, Okyung;Choi, Yoonki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.58-70
    • /
    • 2017
  • The planning for material lifting operations is one of the key processes in high-rise building construction. Several previous studies have used rough calculations by referring to existing practices or establishing a target value for lifting cycle time or operating rate. Therefore, the purpose of this study is to propose a material lifting process optimization method for reducing the lifting cycle time and increasing the operating rate. In this study, we improve the cyclic operation network (CYCLONE) modeling method that considers the duration and zone information of each work task. This method can be used to hand over work tasks to another crew group in the work process. According to this methodology, this study optimizes the material lifting process, performs a sensitivity analysis, and evaluates the field applicability of the proposed material lifting process optimization method. Therefore, the optimized process was then applied to a high-rise building construction site. The lifting work process time and operating rate for the simulated as - is lifting process data, optimized process data, and field application result data were compared for each lifting height. From this comparison, the effectiveness of the optimization methodology was confirmed.

Development of the Model Using Queueing Theory for Lifting Planning in Tall Buildings (큐잉이론을 이용한 고층건물 가설리프트 계획모델 구축에 관한 연구)

  • Lee, Hak-Ju;Kim, Dae-Won;Cho, Hun-Hee;Kang, Kyung-In
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.628-633
    • /
    • 2008
  • Tall building construction has been increasing due to the need to maximize land usage. It causes the increase of vertical transportation for workers and materials, which significantly affects the productivity and lifting planning, therefore, has to be made carefully based on the characteristics of the field. However, the existing method to calculate the number of lift is too simple to consider complex and various characteristics in tall building construction. Accordingly, we developed the model for selecting the best system of vertical transportation by using Queueing theory. To find out the situation of the queue of resources such as material and workers, a simulation program will be applied.

  • PDF

Tower Crane Foundation Design and Stability Review Model (타워크레인 기초설계 및 안정성 검토 모델)

  • Ho, Jong-Kwan;Han, Kap-Kyu;Kim, Sun-Kuk
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.99-106
    • /
    • 2007
  • Tower crane is a large construction equipment which is extremely tall for its section when it is erected, with its high slenderness ratio, and it has a heavy load by itself due to large lifting stuff to handle. In line with the construction projects in these days which increasingly tend to become higher, larger and complex, the stuff and height subject to lifting are also getting larger and higher, which has also increased the risk of disastrous accidents. A stable foundation design thus to deal with the increasing self load becomes more important. When a typhoon Maemi swept the nation in 2003, as many as 43 tower cranes fell down or collapsed, causing a severe damage to the people and the properties. Considering such fatal damages, a technical evaluation of the stability to prevent the safety accident with the tower crane must be very crucial. Tower cranes operation in domestic construction sites, in fact, have been simply dependent on personal experience and intuition of the engineers. Particularly when it comes to the foundation design, it mostly depends on manufacturer's recommendation. The study hence was intended to develop the fundamental measures for granting the objective stability, instead of following the individual's experience only. The simulation model recommended in the study is expected to make a good commitment to achieving an effective lifting work as well as preventing the safety accident.

Quantitative Risk Assessment based on Fault Tree Analysis for Gangform Accident (갱폼 재해의 FTA를 통한 정량적 위험성 산정에 관한 연구)

  • Ham, Young Jong;Kee, Jung Hun;Park, Jong Yil
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.40-47
    • /
    • 2020
  • Although gangform has good workability due to the integration of outer wall forms and working platforms, 22 workers were died from 21 gangform related accidents during 2012 to 2016. Quantitative risk assessment is required for evident based prevention measure selection. In this study, based on 52 accident data from 2004 to the first half of 2019, FTA is conducted for probabilities of direct causes and their contribution to accidents. Three stages are considered; gangform installation, dismantling and lifting, and using. The effectiveness of countermeasures is evaluated through minimum cut set, RAW and RRW. Complete assembly of gangform on the ground level, detailed planning, and fall prevention device are suggested as prevention measures for installation, dismantling and lifting, and using stages, respectively.

BIM-based Lift Planning Workflow for On-site Assembly in Modular Construction Projects

  • Hu, Songbo;Fang, Yihai;Moehler, Robert
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.63-74
    • /
    • 2020
  • The assembly of modular construction requires a series of thoroughly-considered decisions for crane lifting including the crane model selection, crane location planning, and lift path planning. Traditionally, this decision-making process is empirical and time-consuming, requiring significant human inputs. Recently, research efforts have been dedicated to improving lift planning practices by leveraging cutting-edge technologies such as automated data acquisition, Building Information Modelling (BIM) and computational algorithms. It has been demonstrated that these technologies have advanced lift planning to some degree. However, the advancements tend to be fragmented and isolated. There are two hurdles prevented a systematic improvement of lift planning practices. First, the lack of formalized lift planning workflow, outlining the procedure and necessary information. Secondly, there is also an absence of a shared information environment, enabling storages, updates and the distribution of information to stakeholders in a timely manner. Thus, this paper aims to overcome the hurdles. The study starts with a literature review in combination with document analysis, enabling the initial workflow and information flow. These were contextualised through a series of interviews with Australian practitioners in the crane-related industry, and systematically analysed and schematically validated through an expert panel. Findings included formalized workflow and corresponding information exchanges in a traditional lift planning practice via a Business Process Model and Notation (BPMN). The traditional practice is thus reviewed to identify opportunities for further enhancements. Finally, a BIM-based lift planning workflow is proposed, which integrates the scattered technologies (e.g. BIM and computational algorithms) with the aim of supporting lift planning automation. The resulting framework is setting out procedures that need to be developed and the potential obstacles towards automated lift planning are identified.

  • PDF

FACTORS ACOUNTING FOR ACTIVITY-TIME AND PROJECT-TIME UNCERTAINITIES IN BORED PILES CONSTRUCTION PLANNING: CASE STUDY ON A BUIDLING PROJECT IN HONG KONG

  • Stephen K.K. Cheng;Ming Lu;Hongqin Fan
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.747-753
    • /
    • 2009
  • Planning the construction for a system of bored piles in building foundation engineering is (1) to predict the time duration required to complete all the bored piles with due consideration of relevant engineering factors and site constraints; then (2) to predict the total project time generally by aggregating the predicted working duration for construction of each bored pile. The duration for construction of an individual bored pile results from analyzing various working sequences and different activity duration (such as predrilling, excavation, steelfixing, air-lifting, and concreting, etc.), which is informed by experiences and site records of previous projects. However, determining the project duration for constructing many bored piles on one site is much more complicated than adding up the time duration for individual piles. In practice, project schedules are often found to be unrealistic and incorrect during the construction stage. This is because construction planning is not based on a exhaustive and comprehensive evaluation of site factors, such as site layout plan, site constraints, quality control, environmental control, safety control and logical relationships between different trades. In this paper, we identify those factors based on a foundation engineering site in Hong Kong with ninety-seven bored piles and address their effects on uncertainties in activity time and project time.

  • PDF

Development of Optimum Construction Lift Operation System using Sensing Information for High-rise Building (센싱정보를 활용한 초고층 건설용 리프트 최적화 운행 시스템 개발)

  • Shin, Joong-Hwan;Kwon, Soon-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.153-163
    • /
    • 2013
  • As recent buildings have been more higher and larger, construction vertical lifting planning and operation is a key factor for successful project in tall building. Although many studies have been trying to set up a construction lifting planning system at early stage, there's not existing a control real-time lift operation control system with respect to during construction stage. Therefore, In this study, we use the sensor device to collect the lift operating data for improvement of lift operation efficiency and develope optimum lift operating system which can perform real-time analysis. Finally, we verify the efficiency of proposed system through comparison between realtime operating data and simulated data using proposing system. In this paper, the proposed system show more efficient moving line compared with previous system. This can contribute to development of unmanned lift system.

Risk free zone study for cylindrical objects dropped into the water

  • Xiang, Gong;Birk, Lothar;Li, Linxiong;Yu, Xiaochuan;Luo, Yong
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.377-400
    • /
    • 2016
  • Dropped objects are among the top ten causes of fatalities and serious injuries in the oil and gas industry (DORIS, 2016). Objects may accidentally fall down from platforms or vessels during lifting or any other offshore operation. Proper planning of lifting operations requires the knowledge of the risk-free zone on the sea bed to protect underwater structures and equipment. To this end a three-dimensional (3D) theory of dynamic motion of dropped cylindrical object is expanded to also consider ocean currents. The expanded theory is integrated into the authors' Dropped Objects Simulator (DROBS). DROBS is utilized to simulate the trajectories of dropped cylinders falling through uniform currents originating from different directions (incoming angle at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, and $270^{\circ}$). It is found that trajectories and landing points of dropped cylinders are greatly influenced by the direction of current. The initial conditions after the cylinders have fallen into the water are treated as random variables. It is assumed that the corresponding parameters orientation angle, translational velocity, and rotational velocity follow normal distributions. The paper presents results of DROBS simulations for the case of a dropped cylinder with initial drop angle at $60^{\circ}$ through air-water columns without current. Then the Monte Carlo simulations are used for predicting the landing point distributions of dropped cylinders with varying drop angles under current. The resulting landing point distribution plots may be used to identify risk free zones for offshore lifting operations.

Cooperative Control of Mobile Robot for Carrying Object (물체 운반을 위한 다수 로봇의 협조제어)

  • Jeong, Hee-In;Hoang, Nhat-Minh;Woo, Chang-Jun;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.139-145
    • /
    • 2015
  • This paper proposed a method of cooperative control of three mobile robots for carrying an object placed on a floor together. Each robot moves to the object independently from its location to a pre-designated location for grasping the object stably. After grasping the common object, the coordination among the robots has been achieved by a master-slave mode. That is, a trajectory planning has been done for the master robot and the distances form the master robot to the two slave robots have been kept constant during the carrying operation. The localization for mobile robots has been implemented using the encoder data and inverse kinematics since the whole system does not have the slippage as much as a single mobile robot. Before the carrying operation, the lifting operations are implemented using the manipulators attached on the top of the mobile robots cooperatively. The real cooperative lifting and carrying operations are implanted to show the feasibility of the master-slave mode control based on the kinematics using the mobile manipulators developed for this research.

Lifting Shadows off the End-of-Life Care: Hopes and Beliefs on Video Decision Support Tools for Advance Care Planning

  • Jeong, Heon-Jae;Yoon, Hyeyeon
    • Journal of Hospice and Palliative Care
    • /
    • v.19 no.1
    • /
    • pp.1-4
    • /
    • 2016
  • As advance care planning is taking center stage in the field of end-of-life care, various tools have been developed to aid in the often emotional and difficult decision-making process. Video decision support tools are one of the most promising means of assistance, of which the modus operandi is to provide more comprehensive and precise information of medical procedures to patients and their families, allowing them to make better informed decisions. Despite such value, some are concerned about its potential negative impact. For example, video footages of some procedures may be shocking and unpalatable to non-medical professionals, and patients and families may refuse the procedures. One approach to soften the sometimes unpleasant visual of medical procedures is to show less aggressive or more relaxing scenes. Yet another potential issue is that the objectivity of video decision support tools might be vulnerable to the very stakeholders who were involved in the development. Some might argue that having multiple stakeholders may function as checks and balances and provide collective wisdom, but we should provide more systematic guarantee on the objectivity of the visual decision aids. Because the decision of the modality of an individual's death is the last and most significant choice in one's life, no party should exert their influence on such a delicate decision. With carefully designed video decision support tools, our patients will live the last moments of their lives with dignity, as they deserve.