• Title/Summary/Keyword: Lifting Load

Search Result 165, Processing Time 0.034 seconds

Development of a Model for Physiological Safe Work Load from a Model of Metabolic Energy for Manual Materials Handling Tasks (에너지 대사량을 고려한 인력물자취급시의 생리적 안전 작업하중 모델 개발)

  • Kim Hong-Ki
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.90-96
    • /
    • 2004
  • The objective of this study was to develop a model for safe work load based on a physiological model of metabolic energy of manual material handling tasks. Fifteen male subjects voluntarily participated in this study. Lifting activities with four different weights, 0, 8, 16, 24kg, and four different working frequencies (2, 5, 8, 11 lifts/min) for a lifting range from floor to the knuckle height of 76cm were considered. Oxygen consumption rates and heart rates were measured during the performance of sixteen different lifting activities. Simplified predictive equations for estimating the oxygen consumption rate and the heart rate were developed. The oxygen consumption rate and the heart rate could be expressed as a function of task variables; frequency and the weight of the load, and a personal variable, body weight, and their interactions. The coefficients of determination ($r^2$) of the model were 0.9777 and 0.9784, respectively, for the oxygen consumption rate and the heart rate. The model of oxygen consumption rate was modified to estimate the work load for the given oxygen consumption rate. The overall absolute percent errors of the validation of this equation for work load with the original data set was 39.03%. The overall absolute percent errors were much larger than this for the two models based on the US population. The models for the oxygen consumption rate and for the work load developed in this study work better than the two models based on the US population. However, without considering the biomechanical approach, the developed model for the work load and the two US models are not recommended to estimate the work loads for low frequent lifting activities.

Back Support Mechanism and Proper Posture during Manual Lifting (손으로 물체를 들어올릴 때 배부지지작용과 적절한 자세)

  • Song Ju-Min;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.5 no.1
    • /
    • pp.89-94
    • /
    • 1993
  • Liking is a common activity in many of occupations and daily living, Lifting has been studied for many years. In this article, based on the existing literatures on lifting, mechanism of back support and proper posture during lifting are described. These mechanisms include the intra-abdominal pressure mechanism, the thoracolumbar fascia mechanism, and posterior ligamentous system. Proper posture for lifting are in the squat style, the lumbar spine is aligned in its normal lordosis and the pelvis is aligned in an anterior tilt. Keep the load close to the body and avoid twist white lifting.

  • PDF

Parameteric Analysis for Up-lifting force on Slab track of Bridge (교량상 slab궤도의 상향력 민감도분석)

  • Choi, Sung-Ki;Park, Dae-Geun;Han, Sang-Yoon;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1188-1195
    • /
    • 2007
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads, the settlement of supports, and the temperature gradients. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of various load cases, such as the end rotation of the overhang due to the vertical load, the bending of pier due to acceleration/braking force and temperature deviation, the settlement of embankment and pier, the temperature deviation of up-down deck and front-back pier, and the rail deformation due to wheel loads. The analysis of the rail fastener is made to verify the superposed tension forces in the rail fastener due to various load cases, temperature gradients and settlement of supports. The potential critical fasteners with the highest uplift forces are the fastener adjacent to the civil joint. The main influence factors are the geometry of the bridge such as, the beneath length of overhang, relative position of bridge bearing and fastener, deflection of bridge and the vertical spring stiffness of the fastener.

  • PDF

Comparison of Three Existing Methods for Predicting Compressive Force on the Lumbosacral Disc (들기작업 설계와 평가를 위한 요천추의 Compressive Force 예측모형 비교연구)

  • Kee, Do-Hyung;Chung, Min-K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.581-591
    • /
    • 1995
  • The main objective of this study is to compare three representative methods predicting compressive forces on lumbosacral disc : LP-based method, double LP-based method and EMG-assisted method. Two subjects simulated lifting tasks performed in the refractories industry, in which vertical and horizontal distance, and weight of load were varied. To calculate the L5/S1 compressive forces, EMG signals from six trunk muscles were measured and postural data and locations of load were recorded using the Motion Analysis System. The EMG-assisted model was shown to reflect well all three factors considered here. On the other hand, the compressive forces of the LP-based model and the double LP-based model were only significantly affected by weight of load. In addition, lowly positive correlation was observed between compressive forces of the EMG-assisted model and lifting index(LI) of 1991 NIOSH lifting equation. From this results, it can be concluded that compressive forces on L5/S1 by the EMG-assisted method should be used as biomechanical criterion in order to evaluate risk of jobs precisely, and LI can not evaluate risk of lifting tasks fully.

  • PDF

Evaluation of Joint Reaction Forces for a Hydraulic Excavator Subjected to a Critical Load (가혹하중이 작용하는 경우의 굴삭기 연결부의 반력계산)

  • Kim, Oe-Jo;Yu, Wan-Seok;Yun, Kyeong-Hwa;Gang, Ha-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1154-1163
    • /
    • 1996
  • This paper presents a three dimensional modeling and dynamic anlaysis of a hydraulic excavator. An excavator is composed of a ground, an under-frame, two idlers, two spockets, an upper-frame, a boom, an arm, a bucket two yokes, two connecting rods, two boom cylinders, an arm cylinder, and a bucket cylinder. Each cylinder is modeled with two separate bodies which are linked to each other by a translational joint. The three dimensioanl model of the excavator consists of 22 bodies and each body is assumed as rigid. This paper suggested the maximum lifting capability, a critical load and reaction forces at joints form the DADS simulation. It was presumed that the reaction forces due to a critical load are three times bigger than those due to the maximum lifting capacity.

Assessment of Ergonomic Risk Factors of Manual Material Handling in the Ship Diesel Engine Assembling Processes (모 선박용 디젤엔진 제조업체 들기작업의 인간공학 위험요인 평가)

  • Kim, Boo Wook;Kim, Sun Ja;Shin, Yong Chul;Kim, Hyun Dong;Woo, Ji Hoon;Kang, Dong mug;Lee, Hyun seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.153-159
    • /
    • 2005
  • The purpose of this study was to assess the ergonomic risks of lifting tasks in a marine diesel engine manufacturing industry using the National Institute for Occupational Safety and Health(NIOSH) Revised Lifting Equation(NLE). Average Lifting Index(LI=Weight of Load/Recommended Weight Limit) of a total number of 45 lifting tasks was $1.6{\pm}0.7$. The LIs were above 1 at 34 tasks(75.6%), and above 2 at 11 tasks(24.4%). Parts management showed the highest average LI value (LI=2.3) in all departments, which resulted from high frequency and heave load of lifting. The common and significant ergonomic risk factors in the processes were the heavy weight of diesel engine parts and the long horizontal distance. In addition, some lifting tasks had such potential risk factors as the long vertical distance, the high frequency of lifts or the long work duration.

Analysis of a Long Volumetric Module Lift Using Single and Multiple Cranes

  • Khodabandelu, Ali;Park, JeeWoong;Choi, Jin Ouk;Sanei, Mahsa
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.563-570
    • /
    • 2022
  • Industrialized and modular construction is a growing construction technique that can transfer a large portion of the construction process to off-site fabrication yards. This method of construction often involves the fabrication, pre-assembly, and transportation of massive and long volumetric modules. The module weight keeps increasing as the modules become more complete (with infill) to minimize the work at the site and, as higher productivity can be achieved at the fabrication shop. Thus, a volumetric module delivery gets more challenging and risky. Despite its importance, past research paid relatively insufficient attention to the problem related to the lifting of heavy modules. This can be a complex and time-consuming problem with multiple lifting for transportation-and-installation operations both in fabrication yard and jobsite, and require complex crane operations (sometimes, more than one crane) due to crane load capacity and load balance/stability. This study investigates this problem by focusing on the structural perspective of lifting such long volumetric modules through simulation studies. Various scenarios of lifting a weighty module from the top using four lifting cables attached to crane hooks (either a single crane or double crane) are simulated in SAP software. The simulations account for various factors pertaining to structural indices, e.g., bending stress and deflection, to identify a proper method of module lifting from a structural point of view. The method can identify differences in structural indices allowing identification of structural efficiency and safety levels during lifting, which further allows the selection of the number of cranes and location of lifting points.

  • PDF

Development of a System Observing Worker's Physiological Responses and 3-Dimensional Biomechanical Loads in the Task of Twisting While Lifting

  • Son, Hyun Mok;Seonwoo, Hoon;Kim, Jangho;Lim, KiTaek;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.163-170
    • /
    • 2013
  • Purpose: The purpose of this study is to provide analysis of physiological, biomechanical responses occurring from the operation to lifting or twist lifting task appears frequently in agricultural work. Methods: This study investigated the changes of physiological factors such as heart rate, heart rate variability (HRV) and biomechanical factors such as physical activity and kinetic analysis in the task of twisting at the waist while lifting. Results: Heart rates changed significantly with the workload. The result indicated that the workload of 2 kg was light intensity work, and the workload of 12 kg was hard intensity work. Physical activity increased as the workload increased both on wrist and waist. Besides, stress index of the worker increased with the workload. Dynamic load to herniated discs was analyzed using inertial sensor, and the angular acceleration and torque increased with the workload. The proposed measurement system can measure the recipient's physiological and physical signals in real-time and analyzed 3-dimensionally according to the variety of work load. Conclusions: The system we propose will be a new method to measure agricultural workers' multi-dimensional signals and analyze various farming tasks.

Dynamic Analysis of Topside Module in Lifting Installation Phase

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.7-11
    • /
    • 2011
  • The installation phase for a topside module suggested can be divided into 9 stages, which include start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the topside module from a transport barge to a crane vessel takes place in the first three stages, from start to lifting, while the transfer of the module onto a floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with significant wave height (1.52m), with suggested force equilibrium diagrams. The effects of the hydrodynamic interactions between the crane vessel and barge during the lifting stage have been considered. The internal forces caused by the load transfer and ballasting are derived for the lifting phases. The results of these internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the lifting phases, the internal force induced pitch motion is too small to show its influence. However, the effect of the internal force on the wave-induced heave responses in the lifting phases is noticeable in the irregular sea condition because the transfer mass-induced draught changes in the floating structure are observed to have higher amplitudes than the external force induced responses.

Comparison of Lifting and Lowering Activity based on Biomechanical, Physiological, Psychophysical Criteria (들기 작업과 내리기 작업의 생체역학적, 생리학적, 정신물리학적 기준치에 의한 비교)

  • Kim, Hong-Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.145-153
    • /
    • 2010
  • Activity of lifting has been a major issue in many research area related in manual materials handling tasks. However, the opposite activity of lifting, lowering, has received much less attention. It is known that 52% of all box-handling tasks were lowering in nature. The difference in stress between lifting and lowering activity is not well understood. A simple assumption that these two activities are very similar has been established and widely used. However, this simple assumption may be questionable. The objective of this study was to compare a lifting activity and a lowering activity based on the three different ergonomic approaches; (1) biomechanical, (2) physiological, (3) psychophysical approach. It was found that the stress of lowering activity was from 65% to 93%, from 87% to 97%, and from 87% to 96% according to the biomechanical, physiological, and psychophysical point of view, respectively. It is concluded from the result of this study that the stress of lowering activity is lower than that of the lifting activity. The maximum compressive force on the lumbro-sacral joint (L5/S1) was 158% and 108% respectively, for lifting and lowering activity of which the work load is the 58% of Action Limit. It is suggested that the NIOSH AL and RWL and biomechanical criteria should be reconsidered especially for the low frequency of lifting activities.