• Title/Summary/Keyword: Lift-off height

Search Result 29, Processing Time 0.026 seconds

Effect of Coflow Air Velocity on Heat-loss-induced Self-excitation in Laminar Lifted Propane Coflow-Jet Flames Diluted with Nitrogen (질소로 희석된 프로판 동축류 층류 제트 부상화염에서 열손실에 의한 자기진동에 대한 동축류 속도 효과)

  • Lee, Won-June;Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Park, Jong-Ho;Kim, Tae-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.48-57
    • /
    • 2012
  • Laminar lifted propane coflow-jet flames diluted with nitrogen were experimentally investigated to determine heat-loss-related self-excitation regimes in the flame stability map and elucidate the individual flame characteristics. There exists a critical lift-off height over which flame-stabilizing effect becomes minor, thereby causing a normal heat-loss-induced self-excitation with O(0.01 Hz). Air-coflowing can suppress the normal heat-loss-induced self-excitation through increase of a Peclet number; meanwhile it can enhance the normal heat-lossinduced self-excitation through reducing fuel concentration gradient and thereby decreasing the reaction rate of trailing diffusion flame. Below the critical lift-off height. the effect of flame stabilization is superior, leading to a coflow-modulated heat-loss-induced self-excitation with O(0.001 Hz). Over the critical lift-off height, the effect of reducing fuel concentration gradient is pronounced, so that the normal heat-loss-induced self-excitation is restored. A newly found prompt self-excitation, observed prior to a heat-loss-induced flame blowout, is discussed. Heat-loss-related self-excitations, obtained laminar lifted propane coflow-jet flames diluted with nitrogen, were characterized by the functional dependency of Strouhal number on related parameters. The critical lift-off height was also reasonably characterized by Peclet number and fuel mole fraction.

Blow-off and Combustion Characteristics of a Lifted Coaxial Diffusion Flame (동축 확산 부상화염의 Blow-off와 연소 특성)

  • Kwark, Ji-Hyun;Jun, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1089-1096
    • /
    • 2003
  • An experiment was performed to investigate lift-off, blow-off and combustion characteristics of a lifted coaxial diffusion flame according to fuel jet and air velocity. A jet diffusion flame which is attached on the nozzle rim begins to be lifted with increase of air velocity, and finally becomes blow-off at higher air velocity. In experiment, blow-off limit increased with increase of fuel jet velocity, however lift-off occurred at lower air velocity. Flame structure and combustion characteristics were examined by schlieren photos, temperature distributions and emission concentration distributions. Flame temperature became higher at midstream and its RMS became larger at up and downstream with increase of air velocity. Local NO concentration decreased but $CO_2$concentration increased with increase of air velocity, which shows combustion reaction becomes close to be stoichiometric at higher air velocity in spite of lift-off.

An Experimental Study on the Lift-off Characteristics of the Triple Flame with Concentration Gradient (농도구배가 삼지화염의 부상특성에 미치는 영향에 관한 실험적 연구)

  • Seo, Jeong-Il;Kim, Nam-Il;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.7-14
    • /
    • 2004
  • The lift-off characteristics of the triple flame have been studied experimentally with various mean velocities and concentration gradients using a multi-slot burner, which can control the concentration gradient and the mean velocity independently, Lift-off height, axial maximum velocity, flame temperature, and some other characteristics were examined for methane and propane flame, It was found that minimum values of the lift-off heights exist at a certain concentration gradient for constant mean velocity, and this result implies that the propagation velocity has a maximum value at this condition, OH radical distribution was measured with LIF method and velocity variation along streamline was measured with PlV system. In addition maximum temperature along streamline was measured with CARS system. The intensity of the diffusion flame affects on the propagation velocity of triple flame in the region of very weak concentration gradient.

  • PDF

Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet ( I ) - Lift-off and Flame Stability - (산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (I) - 화염의 부상과 안정성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.160-166
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase flame stability as well as thermal efficiency due to improving the burning rate. Lift-off, blowout limit and flame length were examined as a function of jet velocity, coflow velocity and OEC(Oxygen Enriched Concentration). Blowout limit of the flame below OEC 25% decreased with increase of coflow velocity, but the limit above OEC 25% increased inversely. Lift-off height decreased with increase of OEC. In particular, lift-off hardly occurred in the condition above OEC 40%. Flame length of the flames above OEC 40% was increased until the blowout occurred. Great flame stability was obtained since lift-off and blowout limit significantly increased with increase of OEC.

Lift-off and Flame Stability of a Coaxial Non-Premixed Jet Using Oxygen Enriched Air (산소부화공기를 이용한 동축 제트화염의 부상과 연소 안정성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.326-331
    • /
    • 2003
  • Combustion using oxygen enriched air is known as a technology which can increase flame stability as well as thermal efficiency due to improvement of the burning rate. Lift-off, blowout limit and flame length were examined as a function of jet velocity, coflow velocity and OEC(Oxygen Enriched Concentration). Blowout limit of the flame below OEC 25% decreased with coflow velocity, but the limit above OEC 25% increased inversely. Lift-off height decreased with increase of OEC. Especially lift-off hardly occurred in the condition above OEC 40%. Flame length of the flames above OEC 40% was increased until the blowout occurred. Flame stability became improved since lift-off and blowout limit increased much with increase of OEC.

  • PDF

Motion Characteristics of Particle in Model GIS (모의 GIS내 금속이물의 거동특성)

  • 김경화;이재걸;곽희로
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.152-159
    • /
    • 1999
  • This paper describes the rmtion characteristics of a particle in GIS under AC voltage. To measure the motion characteristics of the particle, a model gas chamber and parallel plain electrodes were designed and manufactured lift-off voltages of wire and spherical particles on the electrode were calculated and rreasured, and electric charge was calculated. By using a high speed carrera, the rmtion characteristics of various particles with aw}ied voltages, such as motion pattern, lift-off time, lift-off height, were analyzed 1be lift-off voltages were greatly affected by diarreters of wire and spherical particles. At voltage around lift-off voltage, the stand-up particle in vertical state rmved up and down between electrodes and the height of the lift-off particle was low. At voltage around breakdown voltage, the particle repeated vertical rotation a few times while they were being lifted off, and then, they were floating between the electrodes.trodes.

  • PDF

An Experimental Study on the Effect of Fuel Dilution on the Propagation Velocity of Triple Flames in a Diverging Channel (연료희석이단면확대채널에형성된삼지화염의전파속도에미치는영향에관한실험적연구)

  • Seo, Jeong-Il;Shin, Hyun-Dong;Kim, Nam-Il
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.13-18
    • /
    • 2007
  • When triple flames propagated in a diverging channel, the effects of fuel dilution on the lift-off characteristics of triple flames were investigated. A multi-slot burner was used to stabilize the lift-off flame especially at weak fuel concentration gradients. It was reported that there is a maximum propagation velocity at a critical concentration gradient in an open jet regardless of fuel dilution. The enhancement of a diffusion flame affected to increase the propagation velocity around critical concentration gradients. However, the influence of a confined channel on the structure of triple flames according to fuel dilution needs to be investigated compared with an open jet case. This study aimed to examine the effect of a confined channel on the structure and the propagation velocity of the triple flames according to fuel dilution. Lift-off height and propagation velocity of triple flames were investigated by employing three kinds of fuel compositions diluted by nitrogen (0%, 25%, 50% $N_2$), Fuel dilution reduced the propagation velocity of triple flame in a confined channel mainly due to the decrease of flame temperature in premixed branch. Despite the difference in fuel dilution, the propagation velocity has a maximum value at a specific fuel concentration gradient even though the critical concentration gradient increases with fuel dilution. And the critical concentration gradient in a confined channel is larger than that in an open jet due to enhancement of convective diffusion.

  • PDF

The Experimental Study of Distribution Characteristics of Lift-force Acting under Pier Deck (잔교상판(棧橋床板)에 작용(作用)하는 양압력(揚壓力) 분포특성(分布特性)에 관한 실험적(實驗的) 연구(硏究))

  • Park, Sang Kil;Park, Hyun Soo;Ahn, Ik Seong;Kim, Woo Saeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.83-90
    • /
    • 2009
  • This study describes the characteristics of distribution of lift-force acting under pier deck through physical experiment. The shape of peak wave pressure was sharp when compressed air existed but was not sharp without that. Values of lift-force was different between edge point and center point in the same block. Distribution of lift-force was expressed differently owing to dimensionless of deck length (l/L), wave steepness (H/L), clearance height per wave height (D/H). The dimensionless factor of D/H affected on the lift-force the clearance between still water surface and decks. This decided the maximum of lift-force. In the case of the same values of D/H, the lift-force are changed by the wave steepness (H/L). Because (D/H) become smaller as the wave steepness (H/L) is increased the height of decks must be decided with the condition which don't have the clearance with $D_{max}$ for the stable design of deck of pier. Effect of reducing lift force was greater in the on-shore than the off-shore according to compressed air existence. This researches points out that design of deck should retain compressed air in order to reduce wave lift force.

Aerodynamic Characteristics of WIG Effect Vehicle with Direct Underside Pressurization (DUP (Direct Underside Pressurization)을 가진 위그선의 공력특성에 관한 연구)

  • Lee, Ju-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.655-663
    • /
    • 2010
  • DUP (direct underside pressurization) is a device that can considerably increase lift, reduce take-off speed and minimize hump drag when a WIG effect vehicle takes off on the water surface. A 3-dimensional numerical investigation of a WIG effect vehicle with DUP is performed to analyze aerodynamic characteristics and the static height stability. The model vehicle, named Aircat, consists of a propeller in the middle of a fuselage, an air chamber under the fuselage, Lippisch-type wings and a large horizontal T-tail. The lift is mainly increased by the stagnation of the accelerated air coming into the air chamber through the channel in the middle of the fuselage. However, the accelerated air increases drag as well as reduces static height stability.

SENSITIVITY ANALYSIS OF SUV PARAMETERS ON ROLLOVER PROPENSITY

  • Jang, B.C.;Marimuthu, R.P.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.703-714
    • /
    • 2006
  • The growing concern surrounding rollover incidences and consequences of Sports Utility Vehicles(SUV) have prompted to investigate the sensitivity of critical vehicle parameters on rollover. In this paper, dynamic rollover simulation of Sports Utility Vehicles is carried out using a validated nonlinear vehicle model in Matlab/Simulink. A standard model is considered and critical vehicle parameters like CG height, track width and wheel base are varied within chosen specified limits to study its influence on roll behavior during a Fishhook steering maneuver. A roll stability criterion based on Two Wheel Lift Off(TWLO) phenomenon is adopted for rollover propensity prediction. Further dynamic rollover characteristics of the vehicle are correlated with Static Stability Factor(SSF), Roll Stability Factor(RSF) and Two Wheel Lift Off Velocity(TWLV). These findings will be of immense help to SUV chassis designers to determine safety limits of critical vehicle parameters and minimize rollover incidences.