• 제목/요약/키워드: Lift coefficient

검색결과 374건 처리시간 0.027초

다리우스 풍차의 회전각에 따른 순간 토오크 해석 (A Instantaneous Torque Analysis of the Darrieus Wind Turbine varying with the rotating Angle of blade)

  • 오철수;권순홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.659-661
    • /
    • 1992
  • This paper deals with aerodynamic problems of the rotating blade of Darrieus wind turbine and its instantaneous torque. The instantaneous torque varying with the rotating angle of blade was obtained through resultant wind velocity, angle of attack, lift and drag coefficient. These are obtained from a given wing section, size and wind velocity.

  • PDF

Development of wind vortex shedding coefficients for a multisided cylinder structure

  • Chang, Byungik;Neill, Michael;Issa, Roy;Miller, Aaron
    • Wind and Structures
    • /
    • 제18권2호
    • /
    • pp.181-194
    • /
    • 2014
  • A major problem with high-mast light poles is the effects that wind vortex shedding can have on the pole itself because of the lock-in phenomenon. It is desired that the coefficients in the AASHTO Standard Specifications ($5^{th}$ edition) for Structural Supports for Highway Signs, Luminaries, and Traffic Signals be analyzed and refined. This is for the belief that the span of the shapes of poles for which the coefficients are used is much too broad and a specific coefficient for each different shape is desired. The primary objective of this study is to develop wind vortex shedding coefficient for a multisided shape. To do that, an octagonal shape was used as the main focus since octagonal cross sectioned high-mast light poles are one of the most common shapes in service. For the needed data, many wind parameters, such as the static drag coefficient, the slope of aerodynamic lift coefficient, Strouhal number, the lock-in range of wind velocities producing vibrations, and variation of amplitude of vortex-induced vibration with Scruton number are needed. From wind tunnel experiments, aerodynamic parameters were obtained for an octagonal shape structure. Even though aerodynamic coefficients are known from past test results, they need to be refined by conducting further wind tunnel tests.

System Identification of Aerodynamic Coefficients of F-16XL (ICCAS 2004)

  • Seo, In-Yong;Pearson, Allan E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.383-388
    • /
    • 2004
  • This paper presents the aerodynamic coefficient modeling with a new model structure explored by Least Squares using Modulating Function Technique (LS/MFT) for an F-16XL airplane using wind tunnel data supplied by NASA/LRC. A new model structure for aerodynamic coefficient was proposed, one that considered all possible combination terms of angle of attack ${\alpha}$(t) and ${\alpha}$(t) given number of harmonics K, and was compared with Pearson's model, which has the same number of parameters as the new model. Our new model harmonic results show better agreement with the physical data than Pearson's model. The number of harmonics in the model was extended to 6 and its parameters were estimated by LS/MFT. The model output of lift coefficient with K=6 correspond reasonably well with the physical data. In particular, the estimation performances of four aerodynamic coefficients were greatly improved at high frequency by considering all harmonics included in the input${\alpha}$(t), and by using the new model. In addition, the importance of each parameter in the model was analyzed by parameter reduction errors. Moreover, the estimation of three parameters, i.e., amplitude, phase and frequency, for a pure sinusoid and a finite sum of sinusoids- using LS/MFT is investigated.

  • PDF

BEMT에 의한 100kW 풍력터빈 블레이드 기본설계 및 출력 성능해석 (Basic Configuration Design and Performance Analysis of a 100kW Wind Turbine Blade using Blade Element Momentum Theory)

  • 김범석;김만응;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.827-833
    • /
    • 2008
  • In this study, mathematical expressions based upon the conventional BEMT(blade element momentum theory) was applied to basic 100kW wind turbine blade configuration design. Power coefficient and related flow parameters, such as Prandtl's tip loss coefficient, tangential and axial flow induction factors of the wind turbine were analyzed systematically. X-FOIL was used to acquire lift and drag coefficients of the 2-D airfoils and Viterna-Corrigan formula was used o interpolate he aerodynamic characteristics in post-stall region. Also, aerodynamic characteristics, measured in a wind tunnel to calculate he power coefficient was applied. The comparative results such as axial and tangential flow factors, power coefficients were presented in this study. Power coefficient, calculated by in-house code was compared with the GH-Bladed result. The difference of the aerodynamic characteristics caused the difference of the performance characteristics as variation as TSR.

쿼드로터 블레이드의 공력특성 (Aerodynamics Characteristics of Quad-Rotor Blade)

  • 기현;최종욱;김성초
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.43-46
    • /
    • 2008
  • Quad-Rotor, which consists of four blades, performs a flight task by controling each rotation speed of the four blades. Quad-Rotor blade making no use of cyclic pitch or collective one is a type of fixed-wing as different from helicopter blade. Although, Quad-Rotor is simple and easy to control for those reasons, blade configuration of the fixed wing is one of the critical factors in determining the performance of Quad-Rotor. In the present study, coefficients for thrust and power of Quad-Rotor blade were derived from the data acquired by using 6-component balances. Firstly, Measurements for aerodynamic force were conducted at various pitch angles (i.e., from 0$^{\circ}$ to 90$^{\circ}$ with the interval of 10$^{\circ}$). The blade used in this experiment has aspect ratio of 6 and chord length of 35.5 mm. Secondly, assembled-blade, which was an integral blade but divided into many pieces, was used in order to test aerodynamic forces along twist angles. The curve of thrust coefficient along pitch angle indicates a parabola form. Stall which occurs during wind tunnel test to calculate lift coefficient of airfoil does not generate. When deciding the blade twist angle, structural stability of blade should be considered together with coefficients of thrust and power. Those aerodynamic force data based on experimental study will be provided as a firm basis for the design of brand-new Quad-Rotor blade.

  • PDF

다공 디젤노즐의 홀수 변화에 따른 우량계수 평가에 관한 연구 (A Study on Estimate of Flow Coefficient with Variation of Hole Number in Multi-hole Diesel Nozzle)

  • 이지근;조원일;노병준
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.59-66
    • /
    • 2001
  • This experimental study is to investigate the flow characteristics of the multi-hole nozzle used in the fuel injection system of a heavy-duty diesel engine. A multi-hole diesel nozzle with a 2-spring nozzle holder was used in this study and without changing the total orifice exit area, its hole number varied from 3($d_n$=0.42mm) to 8($d_n$=0.25mm). The injection pressure and needle lift were measured and Bosch type injection rates measurement system was used. The discharge flowrates of each orifice in the multi-hole nozzle changed by the flow conditions inside the nozzle sac hole. In case that pump speed and injection quantity were low, the orifice located in the vertex of nozzle tip had a great deal of injection quantity compared with that of others. As the increment of multi-hole number, the injection duration and the mean injection pressure decrease. The mean and peak injection rates, however, increase. Actually, the mean flow coefficient(${C_d}_{(mean)}$) increases, too. The flow coefficient of the multi 8 hole was evaluated as Cd(mean)=0.74 and that is the maximum value among the examined conditions.

  • PDF

구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석 (The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient)

  • 양성모;송준혁;강희용;노홍길
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

Transiting test method for galloping of iced conductor using wind generated by a moving vehicle

  • Guo, Pan;Wang, Dongwei;Li, Shengli;Liu, Lulu;Wang, Xidong
    • Wind and Structures
    • /
    • 제28권3호
    • /
    • pp.155-170
    • /
    • 2019
  • This paper presents a novel test method for the galloping of iced conductor using wind generated by a moving vehicle which can produce relative wind field. The theoretical formula of transiting test is developed based on theoretical derivation and field test. The test devices of transiting test method for aerodynamic coefficient and galloping of an iced conductor are designed and assembled, respectively. The test method is then used to measure the aerodynamic coefficient and galloping of iced conductor which has been performed in the relevant literatures. Experimental results reveal that the theoretical formula of transiting test method for aerodynamic coefficient of iced conductor is accurate. Moreover, the driving wind speed measured by Pitot tube pressure sensors, as well as the lift and drag forces measured by dynamometer in the transiting test are stable and accurate. Vehicle vibration slightly influences the aerodynamic coefficients of the transiting test during driving in ideal conditions. Results of transiting test show that the tendencies of the aerodynamic coefficient curve are generally consistent with those of the wind tunnel tests in related studies. Meanwhile, the galloping is fairly consistent with that obtained through the wind tunnel test in the related literature. These studies validate the feasibility and effectiveness of the transiting test method. The present study on the transiting test method provides a novel testing method for research on the wind-resistance of iced conductor.

두 개의 원형 실린더에 작용하는 유체력 (Forces induced by flows past two nearby circular cylinders)

  • 이경준;양경수;윤동혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2845-2850
    • /
    • 2007
  • Flow-induced forces on two identical nearby circular cylinders immersed in the cross flow at Re =100 were numerically studied. We consider all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. It turns out that significant changes in the characteristics of flow-induced forces are noticed depending on how the two circular cylinders are positioned, resulting in quantitative changes of force coefficients on both cylinders. Collecting all the numerical results obtained, we propose a contour diagram for drag coefficient and lift coefficient for each of the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use those diagrams to estimate flow-induced forces on two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

  • PDF

Design and Implementation of UAV's Autopilot Controller

  • Lee, Jeong-Hwan;Lee, Ki-Sung;Jeong, Tae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.52-56
    • /
    • 2004
  • Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted aircraft by inputted program in advance or artificial intelligence. In this study Aileron and Elevator are used to control the movement of airplane for horizontal and vertical flights about its longitudinal and lateral axis. In an introduction, the drone was linearly modeled by extracting aerodynamic parameter through flight test and simulation, lift and drag coefficient corresponding to angle of attack, changes of pitching moment coefficient. In the main subject, the flight simulation was performed after constructing hardware using TMS320F2812 from TI company and PID with lateral and longitudinal controller for horizontal and vertical flights. Flying characteristics of two system were estimated and compared through real flight test with hardware equipped algorithm and adaptive algorithm that was applied to consider external factors such as turbulence. In conclusion the control performance of the controller with proposed algorithm was streamlined at lateral and longitudinal controller respectively, we will discuss guidance command to pass way point.

  • PDF