• Title/Summary/Keyword: Lifetime Prediction

Search Result 221, Processing Time 0.024 seconds

Numerical Prediction of Solder Fatigue Life in a High Power IGBT Module Using Ribbon Bonding

  • Suh, Il-Woong;Jung, Hoon-Sun;Lee, Young-Ho;Choa, Sung-Hoon
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1843-1850
    • /
    • 2016
  • This study focused on predicting the fatigue life of an insulated gate bipolar transistor (IGBT) power module for electric locomotives. The effects of different wiring technologies, including aluminum wires, copper wires, aluminum ribbons, and copper ribbons, on solder fatigue life were investigated to meet the high power requirement of the IGBT module. The module's temperature distribution and solder fatigue behavior were investigated through coupled electro-thermo-mechanical analysis based on the finite element method. The ribbons attained a chip junction temperature that was 30℃ lower than that attained with conventional round wires. The ribbons also exhibited a lower plastic strain in comparison with the wires. However, the difference in plastic strain and junction temperature among the different ribbon materials was relatively small. The ribbons also exhibited different crack propagation behaviors relative to the wires. For the wires, the cracks initiated at the outmost edge of the solder, whereas for the ribbons, the cracks grew in the solder layer beneath the ribbons. Comparison of fatigue failure areas indicated that ribbon bonding technology could substantially enhance the fatigue life of IGBT modules and be a potential candidate for high power modules.

Fault Tolerance Design of Uplink Command Processor (상향링크 명령 처리기의 결함 허용 설계)

  • Gu, Cheol Hoe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.95-100
    • /
    • 2003
  • Electronic equipment used in satellites are demanding extremely high reliability, so they should be designed to have immunity for some critical faults by using redundancy component. Generally, Communication satellites are assigned to meet the 15 years mission lifetime, of the analysis about faults must be performed to electronic equipments of satellite. This paper is a summary of the fault tolerance design research of command processor, the improvement of reliability and trade-off study of fault tolerance design result. The reliability prediction value of the satellite component used in this research was taken from Koreasat 3 and Kompsat 1. It is important to perform many trade-off studies for fault tolerance design, especially to choose the most proper fault tolerance method for the specified fault scenario.

Creep Design of Type 316LN Stainless Steel by K-R Damage Theory (K-R 손상이론에 의한 316LN 스테인리스강의 크리프 설계)

  • Kim, U-Gon;Kim, Dae-Hwan;Ryu, U-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.296-303
    • /
    • 2001
  • Kachanov-Rabotnov(K-R) creep damage theory was reviewed, and applied to design a creep curve for type 316LN stainless steel. Seven coefficients used in the theory, i.e., A, B, k, m, λ, r, and q were determined, and their physical meanings were analyzed clearly. In order to quantify a damage parameter ($\omega$), cavity amount was measured in the crept specimen taken from interrupted creep test with time variation, and then the amount was reflected into K-R damage equations. Coefficient λ, which is regarded as a creep tolerance feature of a material, increased with creep strain. Mater curve with λ=2.8 was well coincided with an experimental one to the full lifetime. The relationship between damage parameter and life fraction was matched with the theory at exponent ${\gamma}$=24 value. It is concluded that K-R damage equation was reliable as the modelling equation for type 316LN stainless steel. Coefficient data obtained from type 316LN stainless steel can be utilized for life prediction of operating material.

Service-life Prediction of Reinforced Concrete Structures in Subsurface Environment (지중 환경하에서의 철근콘크리트 구조물의 열화인자별 한계수명 평가)

  • Kwon, Ki-jung;Jung, Haeryong;Park, Joo-Wan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • This paper focuses on the estimation of durability and service-life of reinforced concrete structures in Wolsong Low- and intermediate-level wastes Disposal Center (WLDC) in Korea. There are six disposal silos located in the saturated environment. The silo concrete is degraded due to reactions with groundwater and chemical attacks, and finally it will lose its properties as a transport barrier. The infiltration of sulfate and magnesium, leaching of potassium hydroxide, and chlorine induced corrosion are the most significant factors for degradation of reinforced concrete structure in underground environment. From the result of evaluation of the degradation time for each factor, the degradation rate of the reinforced concrete due to sulfate and magnesium is $1.308{\times}10^{-3}cm/yr$, and it is estimated to take 48,000 years for full degradation while potassium hydroxide is leached in depth of less than 1.5 cm at 1,000 years after the initiation of degradation. In case of chlorine induced corrosion, it takes 1,648 years to initiate corrosion in the main reinforced bar and 2,288 years to reach the lifetime limit of the structural integrity, and thus it is evaluated as the most significant factor.

A Study on Finite Element Analysis and Aging Test for Automotive Grommet (자동차 그로멧의 유한요소해석 및 노화시험에 대한 연구)

  • Lee, Seong-Beom;Yeom, Sang-Hoon;Han, Chang-Yong;Woo, Chang-Su
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.201-209
    • /
    • 2012
  • Grommet is one of the Automotive rubber components and is made from EPDM(Ethylene Propylene Diene monomer M-class) rubber and the nonlinear hyperelastic material properties of rubber are important to predict the behavior of rubber product. In this study, the stable stress-strain relations were obtained from the uni-axial tension test and the equi-biaxial tension test. Finite element analysis for grommet was carried out and heat aging test for the lifetime prediction of grommet was introduced.

Design of a Low Power Self-tuning Digital System Considering Aging Effects (노화효과를 고려한 저전력 셀프 튜닝 디지털 시스템의 설계)

  • Lee, Jin-Kyung;Kim, Kyung Ki
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • It has become ever harder to design reliable circuits with each nanometer technology node; under normal operation conditions, a transistor device can be affected by various aging effects resulting in performance degradation and eventually design failure. The reliability (aging) effect has traditionally been the area of process engineers. However, in the future, even the smallest of variations can slow down a transistor's switching speed, and an aging device may not perform adequately at a very low voltage. Therefore, circuit designers need to consider these reliability effects in the early stages of design to make sure there are enough margins for circuits to function correctly over their entire lifetime. However, such an approach excessively increases the size and power dissipation of a system. As the impact of reliability, new techniques in designing aging-resilient circuits are necessary to reduce the impact of the aging stresses on performance, power, and yield or to predict the failure of a system. Therefore, in this paper, a novel low power on-chip self-tuning circuit considering the aging effects has been proposed.

Analysis of Real-Time Estimation Method Based on Hidden Markov Models for Battery System States of Health

  • Piao, Changhao;Li, Zuncheng;Lu, Sheng;Jin, Zhekui;Cho, Chongdu
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.217-226
    • /
    • 2016
  • A new method is proposed based on a hidden Markov model (HMM) to estimate and analyze battery states of health. Battery system health states are defined according to the relationship between internal resistance and lifetime of cells. The source data (terminal voltages and currents) can be obtained from vehicular battery models. A characteristic value extraction method is proposed for HMM. A recognition framework and testing datasets are built to test the estimation rates of different states. Test results show that the estimation rates achieved based on this method are above 90% under single conditions. The method achieves the same results under hybrid conditions. We can also use the HMMs that correspond to hybrid conditions to estimate the states under a single condition. Therefore, this method can achieve the purpose of the study in estimating battery life states. Only voltage and current are used in this method, thereby establishing its simplicity compared with other methods. The batteries can also be tested online, and the method can be used for online prediction.

Fatigue life prediction for radial truck tires using a global-local finite element method

  • Jeong, Kyoung Moon;Beom, Hyeon Gyu;Kim, Kee-Woon;Cho, Jin-Rae
    • Interaction and multiscale mechanics
    • /
    • v.4 no.1
    • /
    • pp.35-47
    • /
    • 2011
  • A global-local finite element modeling technique is employed in this paper to predict the fatigue life of radial truck tires. This paper assumes that a flaw exists inside the tire, in the local model. The local model uses an FEM fracture analysis in conjunction with a global-local technique in ABAQUS. A 3D finite element local model calculates the energy release rate at the belt edge. Using the analysis of the local model, a study of the energy release rate is performed in the crack region and used to determine the crack growth rate analysis. The result considers how different driving conditions contribute to the detrimental effects of belt separation in truck tire failure. The calculation of the total mileage on four sizes of radial truck tires has performed on the belt edge separation. The effect of the change of belt width design on the fatigue lifetime of tire belt separation is discussed.

Effects of Thermal Aging on Properties and Life-time Prediction of NBR and EPDM Vulcanizates (열 노화에 따른 NBR과 EPDM 가황물의 물성변화 및 노화수명 예측)

  • Woo, C.S.;Choi, S.S.
    • Elastomers and Composites
    • /
    • v.40 no.2
    • /
    • pp.119-127
    • /
    • 2005
  • Material characteristics and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. In this paper, the material test and accelerated heat aging test were carried out to predict the useful life of NBR and EPDM rubber mount for a compression motor which is used in a refrigerator. In order to investigate the effects of heat-aging on the material properties, crosslink density, modulus at 100% strain, stress-strain curves were obtained from uniaxial and equi-biaxial tensile tests. The change of compression set were used for assessment of the useful life and the time to threshold value were plotted against the reciprocal of absolute temperature to give the Arrhenius plot. The useful life at variable temperatures are obtained in the Arrhenius relationship.

Service life prediction of chloride-corrosive concrete under fatigue load

  • Yang, Tao;Guan, Bowen;Liu, Guoqiang;Li, Jing;Pan, Yuanyuan;Jia, Yanshun;Zhao, Yongli
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • Chloride corrosion has become the main factor of reducing the service life of reinforced concrete structures. The object of this paper is to propose a theoretical model that predicts the service life of chloride-corrosive concrete under fatigue load. In the process of modeling, the concrete is divided into two parts, microcrack and matrix. Taking the variation of mcirocrack area caused by fatigue load into account, an equation of chloride diffusion coefficient under fatigue load is established, and then the predictive model is developed based on Fick's second law. This model has an analytic solution and is reasonable in comparison to previous studies. Finally, some factors (chloride diffusion coefficient, surface chloride concentration and fatigue parameter) are analyzed to further investigate this model. The results indicate: the time to pit-to-crack transition and time to crack growth should not be neglected when predicting service life of concrete in strong corrosive condition; the type of fatigue loads also has a great impact on lifetime of concrete. In generally, this model is convenient to predict service life of chloride-corrosive concrete with different water to cement ratio, under different corrosive condition and under different types of fatigue load.