• Title/Summary/Keyword: Lifetime Prediction

Search Result 220, Processing Time 0.039 seconds

Lifetime Prediction of Acrylic Resin for Metal Artifacts Reinforcement (금속유물 강화용 아크릴수지 수명예측)

  • Gwak, Hongin;Kim, Jinkuk
    • Conservation Science in Museum
    • /
    • v.10
    • /
    • pp.75-88
    • /
    • 2009
  • The purpose of this study is to determine the lifetime of acrylic resin ParaloidTM B-72(EMA copolymer), which is widely used as a coating for metallic artifacts to prevent corrosion. Lifetime factor with temperature, selected chromaticity as the test parameter for lifetime prediction. The found result is that the temperature is the most crucial factor influencing the prediction of the lifetime of the EMA copolymer coated iron surface against corrosion. The simulation results, based on Arrhenius Equation, showed that the lifetime prediction of the EMA coated iron surface was 24.5 years at 16℃, 17.1 years at 20℃, and 12.0 years at 24℃, respectively.

Lifetime Prediction and Aging Behaviors of Nitrile Butadiene Rubber under Operating Environment of Transformer

  • Qian, Yi-hua;Xiao, Hong-zhao;Nie, Ming-hao;Zhao, Yao-hong;Luo, Yun-bai;Gong, Shu-ling
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.918-927
    • /
    • 2018
  • Based on the actual operating environment of transformer, the aging tests of nitrile butadiene rubber (NBR) were conducted systematically under four conditions: in air, in transform oil, under compression in air and under compression in transform oil to studythe effect of high temperature, transform oil and compression stress simultaneously on the thermal aging behaviors of nitrile butadiene rubber and predict the lifetime. The effects of liquid media and compression stress simultaneously on the thermal aging behaviors of nitrile butadiene rubber were studied by using characterization methods such as IR spectrosc-opy, thermogravimetric measurements, Differential Scanning Calorimetry (DSC) measurements and mechanical property measurements. The changes in physical properties during the aging process were analyzed and compared. Different aging conditions yielded materials with different properties. Aging at $70^{\circ}C$ under compression stress in oil, the change in elongation at break was lower than that aging in oil, but larger than that aging under compression in air. The compression set or elongation at break as evaluation indexes, 50% as critical value, the lifetime of NBR at $25^{\circ}C$ was predicted and compared. When aging under compression in oil, the prediction lifetime was lower than in air and under compression in air, and in oil. It was clear that when predicting the service lifetime of NBR in oil sealing application, compression and media liquid should be involved simultaneously. Under compression in oil, compression set as the evaluation index, the prediction lifetime of NBR was shorter than that of elongation at break as the evaluation index. For the life prediction of NBR, we should take into account of the performance trends of NBR under actual operating conditions to select the appropriate evaluation index.

Development of Solid State Relay(SSR) Life Prediction Device for Glass Forming Machine (유리 성형기의 무접점릴레이(SSR) 수명 예측장치 개발)

  • Yang, Sung-Kyu;Kim, Gab-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.46-53
    • /
    • 2022
  • This paper presents the design and manufacture of a Solid State Relay (SSR) life prediction device that can predict the lifetime of an SSR, which is a key component of a glass forming machine. The lifetime of an SSR is over when the current supplied to the relay is overcurrent (20 A or higher), and the operating time is 100,000 h or longer. Therefore, the life prediction device for the SSR was designed using DSP to accurately read the current and temperature values from the current and temperature sensors, respectively. The characteristic test of the manufactured non-contact relay life prediction device confirmed that the current and temperature were safely measured. Thus, the SSR lifetime prediction device developed in this study can be used to predict the lifetime of an SSR attached to a glass forming machine.

Application of deep learning with bivariate models for genomic prediction of sow lifetime productivity-related traits

  • Joon-Ki Hong;Yong-Min Kim;Eun-Seok Cho;Jae-Bong Lee;Young-Sin Kim;Hee-Bok Park
    • Animal Bioscience
    • /
    • v.37 no.4
    • /
    • pp.622-630
    • /
    • 2024
  • Objective: Pig breeders cannot obtain phenotypic information at the time of selection for sow lifetime productivity (SLP). They would benefit from obtaining genetic information of candidate sows. Genomic data interpreted using deep learning (DL) techniques could contribute to the genetic improvement of SLP to maximize farm profitability because DL models capture nonlinear genetic effects such as dominance and epistasis more efficiently than conventional genomic prediction methods based on linear models. This study aimed to investigate the usefulness of DL for the genomic prediction of two SLP-related traits; lifetime number of litters (LNL) and lifetime pig production (LPP). Methods: Two bivariate DL models, convolutional neural network (CNN) and local convolutional neural network (LCNN), were compared with conventional bivariate linear models (i.e., genomic best linear unbiased prediction, Bayesian ridge regression, Bayes A, and Bayes B). Phenotype and pedigree data were collected from 40,011 sows that had husbandry records. Among these, 3,652 pigs were genotyped using the PorcineSNP60K BeadChip. Results: The best predictive correlation for LNL was obtained with CNN (0.28), followed by LCNN (0.26) and conventional linear models (approximately 0.21). For LPP, the best predictive correlation was also obtained with CNN (0.29), followed by LCNN (0.27) and conventional linear models (approximately 0.25). A similar trend was observed with the mean squared error of prediction for the SLP traits. Conclusion: This study provides an example of a CNN that can outperform against the linear model-based genomic prediction approaches when the nonlinear interaction components are important because LNL and LPP exhibited strong epistatic interaction components. Additionally, our results suggest that applying bivariate DL models could also contribute to the prediction accuracy by utilizing the genetic correlation between LNL and LPP.

Lifetime Prediction of Rubber Pad for High Speed Railway Vehicle (고속철도용 레일패드 노후화 정량화 방안 연구)

  • Woo, Chang-Su;Choe, Byeong-Ik;Park, Hyun-Sung;Yang, Shin-Chu;Jang, Sung-Yep;Kim, Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.739-744
    • /
    • 2009
  • Rail-pad is an important and readily replaceable component of a railway track, as it is the elastic layer between the rail and the sleeper. Characteristics and useful lifetime prediction of rail-pad was very important in design procedure to assure the safety and reliability. In this paper, the degradation of rail pad properties as a function of their in-service life is studied with a view of developing a technique for predicting the optimum period of track maintenance with regard to pad replacement. In order to investigate the useful lifetime, the accelerate test were carried out. Accelerated test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful lifetime prediction for rail-pads were proposed.

Lifetime Prediction of RF SAW Duplexer Using Accelerated Life Testing (가속수명시험을 이용한 RF SAW 듀플렉서의 수명예측)

  • Kim, Young-Goo;Kim, Tae-Hong;Kang, Sang-Gee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.616-618
    • /
    • 2014
  • In this paper, we designed the accelerated life testing(ALT) and presented the lifetime prediction method of the RF SAW duplexer. We determined RF input power as an accelerated stress when designing an accelerating life testing and defined the lifetime of the duplexer as the period during which the insertion loss increased by 0.5[dB]. Lifetime prediction results of duplexer was estimated for 82,900hours at an ambient temperature of $85^{\circ}C$ and RF input power of 30[dBm].

Personalized Battery Lifetime Prediction for Mobile Devices based on Usage Patterns

  • Kang, Joon-Myung;Seo, Sin-Seok;Hong, James Won-Ki
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.338-345
    • /
    • 2011
  • Nowadays mobile devices are used for various applications such as making voice/video calls, browsing the Internet, listening to music etc. The average battery consumption of each of these activities and the length of time a user spends on each one determines the battery lifetime of a mobile device. Previous methods have provided predictions of battery lifetime using a static battery consumption rate that does not consider user characteristics. This paper proposes an approach to predict a mobile device's available battery lifetime based on usage patterns. Because every user has a different pattern of voice calls, data communication, and video call usage, we can use such usage patterns for personalized prediction of battery lifetime. Firstly, we define one or more states that affect battery consumption. Then, we record time-series log data related to battery consumption and the use time of each state. We calculate the average battery consumption rate for each state and determine the usage pattern based on the time-series data. Finally, we predict the available battery time based on the average battery consumption rate for each state and the usage pattern. We also present the experimental trials used to validate our approach in the real world.

A Study for Lifetime Predition of Expansion Joint Using HILS (HILS 기법을 적용한 신축관 이음 수명예측에 관한 연구)

  • Oh, Jung-Soo;Cho, Sueng-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.138-142
    • /
    • 2018
  • This study used HILS to test an expansion joint, which is vulnerable to the water hammer effect. The operation data for the HIL simulator was the length rate of the expansion joint by the water hammer, which was used for life prediction based on the vibration durability. For the vibration durability test, the internal pressure of the expansion joint was assumed to be a factor of the durability life, and the lifetime prediction model equation was obtained by curve fitting the lifetime data at each pressure. During the test, the major failure modes of crack and water leakage occurred on the surface of the bellows part. The lifetime prediction model typically follows an inverse power law model. The pressure is a stress factor, and the model is effective in only a specific environment. Therefore, another stress factor such as temperature will be added and considered for a mixed lifetime prediction model in the future.

Useful lifetime prediction of rail-pad by using the accelerated heat aging test (가속 열노화시험을 통한 레일패드 사용수명예측)

  • Woo, Chang-Su;Park, Hyun-Sung;Choi, Byung-Ik;Yang, Sin-Chu;Jang, Sung-Yep;Kim, Eun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1010-1015
    • /
    • 2009
  • Rail-pad is an important and readily replaceable component of a railway track, as it is the elastic layer between the rail and the sleeper. Characteristics and useful lifetime prediction of rail-pad was very important in design procedure to assure the safety and reliability. In order to investigate the useful lifetime, the accelerate test were carried out. Accelerated test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful lifetime prediction for rail-pads were proposed.

  • PDF

Prediction of Lifetime according to AC Aging Phenomina in Epoxy Resin (에폭시 수지의 전기적 열화현상에 따른 수명 예측)

  • Lim, Jang-Seob;Mun, Su-Kyung;Min, Yong-Gee;Kim, Tae-Seoung
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.132-135
    • /
    • 1990
  • This paper presents prediction of insulation lifetime in stress. Essentially, Epoxy resin, when it was subjected to different types of aging condition, produced to varieties of electrical properties and lifetime using spectroscopy and breakdown test. The relationships between the structural and electrical changes of aged epoxy were Investigated.

  • PDF