• Title/Summary/Keyword: Life-cycle (EPC)

Search Result 13, Processing Time 0.023 seconds

Fundamental Investigation of Knowledge Management System for a Plant

  • Seo-kyung Won;Ji-Yune Soh;Junbok Lee ;Choong-hee Han
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.375-380
    • /
    • 2009
  • Gas & Oil plant construction projects are increasing recently all over oil-producing countries. An EPC (Engineering, Procurement and Construction) company, which participates in the plant projects, should possess pertinent engineering licenses and EPC management skills to create high added-value. Nonetheless, there exist various risks involved in the EPC life cycle process due to such characteristics of construction projects as long duration of construction time and complicated processes along with the procured goods or services subjected to various logistics. The objective of this paper is to analyze the overall EPC life cycle for proper process and to examine various information and document. Additionally, the principal data for the analysis of the EPC process are derived from personal interviews with experts and specialty contractors of the plant projects. The results of this study would be widely used as a guide for efficient and effective management of overseas gas plant projects.

  • PDF

Steel Plant Construction (EPC) Project Case Study : Forensic Lessons-learned Analysis and Systems Engineering Improvement Recommendation

  • Kyung-Bae Jin;Young-Ho Kim;Eul-Bum Lee;Suk-Hwan Seo
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.145-150
    • /
    • 2013
  • As a recent global trend, the majority of mega-size plant projects are delivered through EPC (Engineering, Procurement and Construction) contracts, where a single contract is awarded for engineering, procurement, and construction. Under this contracting mechanism, it is challenging for contractors to carry out the projects under traditional project management processes used in design-bid-build projects. A new EPC Plant, the POSCO Special Steel Plant in Changwon, was built successfully at the beginning of 2012 and it is currently in full-scale production. The project has encountered a number of major difficulties however, with some technical and managerial issues through its development process. As summarized in this paper, the authors (as project participants with the contractor) investigated it as a post construction analysis and recorded the Lessons-learned for future project management improvement.

  • PDF

Protection of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus (IHNV) by immunization with G gene's cytoplasmic and transmembrane region-deleted single-cycle IHNV

  • Jae Young, Kim;Jun Soung, Kwak;Hyoung Jun, Kim;Ki Hong, Kim
    • Journal of fish pathology
    • /
    • v.35 no.2
    • /
    • pp.157-165
    • /
    • 2022
  • Single-cycle viruses generated by reverse genetic technology are replication-incompetent viruses due to the elimination of gene(s) essential for viral replication, which provides a way to overcome the safety problem in attenuated viruses. Infectious hematopoietic necrosis virus (IHNV) is a major pathogen causing severe damage in cultured salmonid species. In the present study, we generated a single-cycle IHNV lacking the transmembrane and cytoplasmic domain in the G gene (rIHNV-GΔTM) and evaluated the prophylactic potential of rIHNV-GΔTM in rainbow trout (Oncorhynchus mykiss). To produce rIHNV-GΔTM, IHNV G protein-expressing Epithelioma papulosum cyprini (EPC) cells were established. However, as the efficiency of rIHNV-GΔTM production in EPC cell clones was not high, fish were immunized with a low-tittered single-cycle virus (1.5 × 102 PFU/fish). Despite the low dose, the single-cycle IHNV induced significant protection in rainbow trout against IHNV infection, suggesting high immunogenicity of rIHNV-GΔTM. No significant difference in serum ELISA titers against IHNV between the rIHNV-GΔTM immunized group and the control group suggests that the immunized dose of rIHNV-GΔTM might be too low to induce significant humoral adaptive immune responses in rainbow trout. The involvement of adaptive cellular immunity or innate immunity in the present significantly higher protection by the immunization with rIHNV-GΔTM should be further investigated to know the protection mechanism.

Development of Review Processes and Tools for Liquidated Damages for EPC/Turnkey Project: Contractor's Perspective

  • Hahn, Ki Jeong;Lee, Eul-Bum;Kim, Young Ho
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.718-719
    • /
    • 2015
  • As a recent global trend, the majority of plant projects are delivered through EPC or EPC-turnkey contracts, where a contractor's liability is more complicated because of the mega size scale and financing method. Previous researches have been lacking a practical usability for project members for liabilities of contracts. Those were focused on solving the claims or schedule calculation issues only. The objective of the present study was to develop a validation process for LDs (liquidated damages) in contractor's liabilities with various case studies and expert judgments. As summarized in this paper, the processes and tools were developed with project life cycle process. The project preparation phase includes 3 step check lists to determine the Go or No-go for projects. In progress phase, contractors should focus on the response strategies for claims with liabilities. The study concludes that those developed processes and tools will help to manage risk of LDs for the contractors in the overseas projects.

  • PDF

Identifying the Organizational Competency Factor for Implementing AWP (Advanced Work Packaging) in perspective of Korean EPC Contractor (AWP (Advanced Work Packaging) 체계 도입을 위한 국내건설기업의 필요 조직역량 도출 연구)

  • Moon, Soohwan;Yun, Sungmin;Park, Chan Young;Cho, Tae Sang;Han, Seung Heon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.3
    • /
    • pp.20-27
    • /
    • 2020
  • EPC contractors have made continuous efforts to develop integrated project execution methods to improve the performance of industrial plant project. In particular, the concept of Advanced Work Packaging (AWP) has been recently presented by readjusting the existing "Work Packaging" concept as part of the integrated project execution method from the project life-cycle perspective. However, Korean EPC contractors are still unfamiliar with the AWP implementation. Thus, this study aims to identify the organizational competency factor for effective implementation of AWP. For this purpose, first, this study identified the expected risks in AWP project and the 29 organizational competency factors to manage risks. Second, five experts verified the suitability of factors and supplemented the factors. Finally, 37 factors were identified as organizational competency factors for implementing AWP.

Issues of New Technological Trends in Nuclear Power Plant (NPPs) for Standardized Breakdown Structure

  • Gebremichael, Dagem D.;Lee, Yunsub;Jung, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.353-358
    • /
    • 2020
  • Recent efforts to develop a common standard for nuclear power plants (NPPs) with the aim of creating (1) a digital environment for a better understanding of NPPs life-cycle management aspect and (2) engineering data interoperability by using existing standards among different unspecified project participants (e.g., owners/operators, engineers, contractors, equipment suppliers) during plants' life cycle process (EPC, O&M, and decommissioning). In order to meet this goal, there is a need for formulating a standardized high-level physical breakdown structure (PBS) for NPPs project management office (PMO). However, high-level PBS must be comprehensive enough and able to represent the different types of plants and the new trends of technologies in the industry. This has triggered the need for addressing the issues of the recent operational NPPs and future technologies' ramification for evaluating the changes in the NPPs physical components in terms of structure, system, and component (SSC) configuration. In this context, this ongoing study examines the recent conventional NPPs and technological trends in the development of future NPPs facilities. New reactor models regarding the overlap of variant issues of nuclear technology were explored. Finally, issues on PBS for project management are explored by the examination of the configuration of NPPs primary system. The primary systems' configuration of different reactor models is assessed in order to clarify the need for analyzing the new trends in nuclear technology and to formulate a common high-level PBS. Findings and implications are discussed for further studies.

  • PDF

Front End Engineering and Design (FEED) for Project Management of Thermal Power Plant Construction

  • KIM, Namjoon;JUNG, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.415-419
    • /
    • 2015
  • Engineering is a value-adding process applying knowledge and skills in the construction industry that includes the planning, feasibility study, project management (PM), front end engineering and design (FEED), detail design, procurement, construction, supervision, and operation. Among these engineering activities, FEED is defined as a comprehensive design practice in the early design phase focused on conceptual design and basic design. It is a particularly influencing area that determines the competitiveness of procurement and construction capability of construction firms (KNIN 2013). Nevertheless, previous studies in FEED have been limited to the design process, deliverable, or particular management technique (e.g. system engineering, collaboration, information etc.). In this context, the purpose of this study is to propose a comprehensive FEED business process structure for project management of thermal power plant construction projects encompassing the entire project life cycle. And an assessment methodology for FEED functions was developed. It is expected that the proposed structure of FEED functions and FEED evaluation methodology will contribute to improvement of competitive capability of engineering, procurement, and construction (EPC) companies.

  • PDF

A Study on Establishing Facility and Asset Information from Construction Phase (유지보수 및 자산관리를 위한 시공단계 정보 활용에 관한 연구)

  • Bae Young-Min;Kwahk Kil-Jong;Kim Soo-Jung;Kim Jae-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.529-532
    • /
    • 2003
  • Efficiency and efficient management on maintenance/repair/operation (MRO) phase is getting important with advance in technologies and complex functionalities of building and facility. Using software systems as well as advanced hardware systems in MRO area is spreading along with this trend to take advantage of information technology. Information of building and facility for MRO phase is derived from engineering/procurement/construction (EPC) phase. But most current commercial software systems in EPC and MRO are focusing on their own phase, which arise lack of consistency of information from EPC to MRO phase. But, the information system now used at the MRO phase stop flowing the building and the facilities information and then newly create. Moreover, from all asset management point of view, asset particulars such as the structures and equipments are different the value fluctuation. In order to reflect these information rationally, the construction costs are correctly distributed and the initial price of the asset particulars have to be estimated. In this study, develop the information model which can apply the cost information at the EPC phase to the MRO phase.

  • PDF

Design Verification Method of Offshore Separation Systems Based on System Dynamics (시스템 다이내믹스 기반 해양구조물 분리시스템의 설계검증 방법에 관한 연구)

  • Hwang, John-Kyu;Ko, Jae-Yong;Lee, Dong-Kun;Park, Bon-Yeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.715-722
    • /
    • 2020
  • This paper proposes a design verification method based on system dynamics for offshore separation systems. Oil and gas separation systems are key components of offshore oil platforms; these systems determine the competitiveness of engineering, procurement, and construction (EPC) projects, especially in terms of added value. However, previous research on design verification has been limited to the process and deliverables of design. To address this, the study aims to develop a comprehensive design verification method and the associated functions from the perspective of project management, for the entire project life-cycle of offshore structures. The proposed methodology for design verification is expected to contribute toward effective and detailed designs as well as improve the competitiveness of EPC companies in constructing of shore structures during the early design stages. We first analyzed the separation system of the FPSO using the design verification method adopted by advanced countries and compared it with the system dynamics process formalized as ISO 15288. Subsequently, a tailored process for the design verification of the offshore structure was derived. It is shown that the proposed design verification method can be applied to the front-end engineering design process of of shore structures. Moreover, it can contribute toward the successful performance of offshore projects in the future and also minimize design changes and critical risks during the construction of these offshore structures.

Assessment of FEED Structure and Functions for Project Management of Thermal Power Plant Construction (사업관리 관점의 FEED 업무 프로세스 구조 및 항목 평가 - 화력발전소를 중심으로 -)

  • Kim, Namjoon;Jung, Youngsoo;Yang, Myungdirk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.5
    • /
    • pp.65-76
    • /
    • 2015
  • FEED (Front End Engineering and Design) is the key area that determines the competitiveness of procurement and construction in the EPC contracts especially in terms of the added value. Nevertheless, previous researches in FEED have been limited to the process and deliverable of design work or the particular management business function (e.g. System Engineering, collaboration, information etc.). In this context, the purpose of this study is to propose a comprehensive FEED structure and its functions from the project management perspective throughout the whole project life-cycle for thermal power plants. Proposed FEED business procedures are classified into three levels; First level is the classification of FEED business phases, the second level defines major FEED management functions, and the third level is detailed FEED functions. A survey using proposed FEED functions and assessment variable was conducted in order to analyze the current status and the areas for future improvement. It is expected that the proposed structure, functions, and evaluation methodology for FEED management will contribute to effective practice of FEED as well as to improvement of competitive capability for engineering, procurement, and construction (EPC) companies.