• 제목/요약/키워드: Life-Cycle Cost

검색결과 1,051건 처리시간 0.039초

전과정을 고려한 에너지 자원별 전력생산의 온실가스 배출량과 비용의 상관관계 분석 (Life cycle analysis on correlation relationship between GHG emission and cost of electricity generation system for energy resources)

  • 김희태;안태규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.136.2-136.2
    • /
    • 2011
  • In this work, we analyzed correlations between life-cycle greenhouse gas (GHG) emissions and life-cycle cost of energy resources. Energy resources studied in this paper include coal, natural gas, nuclear power, hydropower, geothermal energy, wind power, solar thermal energy, and solar photovoltaic energy, and all of them are used to generate electricity. We calculated the mean values, ranges of maximum minus minimum values, and ranges of 90% confidence interval of life-cycle GHG emissions and life-cycle cost of each energy resource. Based on the values, we plotted them in two dimensional graphs to analyze a relationship and characteristics between GHG emissions and cost. Besides, to analyze the technical maturity, the GHG emissions and the range of minimum and maximum values were compared to each other. For the electric generation, energy resources are largely inverse proportional to the GHG emission and the corresponding cost.

  • PDF

유지보수정보를 활용한 고속철도차량(KTX-1) 수명주기비용 요소절감 분석 (An Analysis on Cost Factor Reduction of Life Cycle for High Speed Train(KTX-1) Based on the Maintenance Information)

  • 김재문;김양수;장진영;이종성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.2169-2170
    • /
    • 2011
  • This paper presents about the analysis on cost factor reduction using the life cycle cost model for motor block in the KTX-1. Until now, most life cycle cost of the system as a whole that has been studied. but in case of railway industry part, LCC studies are needed on the subsystem like a propulsion control system because subsystems are developed continuously localization. Therefore, In this paper presents cost breakdown structure for life cycle cost (LCC) estimation for localization development of propulsion control system (Motor Block) in high speed railway vehicle (KTX-1). Also to analysis LCC on motor block, it was analyzed physical breakdown structure (PBS) and preventive cost on propulsion control system in view of maintenance cost. Based on this, we describe life cycle cost on motor block of KTX-1.

  • PDF

강교의 도장방식에 따른 안전수명간 생애주기비용분석 (Life Cycle Cost Analysis of Steel Bridges on Its Paint System during Safe Life Under)

  • 한상철;김은겸;조선규
    • 한국안전학회지
    • /
    • 제17권2호
    • /
    • pp.63-68
    • /
    • 2002
  • Life Cycle Cost analysis technique is introduced to evaluate cost-effectiveness of two paint systems of steel bridges. The systems are a conventional paint system and a galvanized paint system. The all costs during safe lift such as initial cost repainting costs, disposal costs are considered for the lift cycle cost analysis. The NIST model is used and BridgeLCC 1.0 developed by the NST is utilized as the lift cycle cost analysis tool. It is concluded that, in spite of expensive initial cost, the durable paint system may be cost-effective compared with conventional paint system.

Life Cycle Cost Breakdown Structure Development of Buildings through Delphi Analysis

  • Jeong, Jae-Hyuk;Shin, Han-Woo;Ryu, Han-Guk;Kim, Gwang-Hee;Kim, Tae-Hui
    • 한국건축시공학회지
    • /
    • 제12권5호
    • /
    • pp.528-538
    • /
    • 2012
  • With domestic construction projects becoming bigger, more specialized and more advanced, the construction industry is striving to improve quality and quantity, and is diversifying functions and shapes. Nevertheless, the process of a construction project causes problems when we estimate construction price, because the cost breakdown structures are different in each step. The primary aim of this study was to estimate building life cycle cost using the Delphi method. The cost breakdown structure for life cycle cost was classified into planning, design, construction, maintenance and waste disposal, and each detailed classification was determined by estimating life cycle cost. Moreover, the developed cost breakdown structure is verified by consulting with experts to secure objectivity and validity.

불확실한 수명주기의 제품에서의 경제적 주문량 모형 (An Economic Order Quantity Model under Random Life Cycle)

  • 윤원영;문일경
    • 대한산업공학회지
    • /
    • 제19권1호
    • /
    • pp.73-77
    • /
    • 1993
  • This paper considers an Economic Order Quantity Model under random life cycle. It is assumed that the life cycle of the product is unknown; a random variable. Three cost parameters are considered; ordering cost, inventory carrying cost and salvage cost. Expected total cost is the optimization criterion. We show that the optimal cycle length is unique and finite, and present a simple line search method to find an optimal cycle length.

  • PDF

'H'대학교 훈련용 항공기의 경제적 수명주기에 관한 연구 (A Study on the Economic Life Cycle of Training Airplane in 'H' University)

  • 장조원;최세종;은희봉
    • 한국항공운항학회지
    • /
    • 제10권1호
    • /
    • pp.57-68
    • /
    • 2002
  • The economical aspects should be evaluated to decide the LCC(Life Cycle Cost) of the long life facilities or equipments. Airplane operators evaluate the economical aspects to decide whether they maintain the existing airplane or substitute the new one. This paper presents economic life cycle and economic life cost for both Cessna 172R and Mooney 20J that are operated for flight training in 'H' University. The residual value that is used to calculate the capital recovery rate of the airplane is calculated based on the data from Blue Book published in USA. The annual equivalent on operation cost is calculated based on the 500 flight hours per year which is the annual flight hour for the airplane in 'H' university. This paper showed that economic life cycle of Cessna 172R is nine years since it was introduced in 2001, and Mooney 20J which was introduced in 1991 exceeds the economic life cycle in 2002.

  • PDF

자기부상열차 시스템의 수명주기비용 모델링에 관한 연구 (A Study on Modeling of Life Cycle Cost for Magnetic Levitation Train)

  • 이윤성;김진오;김형철;장동욱
    • 한국철도학회논문집
    • /
    • 제12권6호
    • /
    • pp.1076-1080
    • /
    • 2009
  • 수명주기비용(Life Cycle Cost, LCC) 분석이란 분석 대상의 수명주기 전 기간에 걸친 총 원가산정을 통하여 해당 시스템을 평가하는 것이다. 철도시스템은 급전, 기계, 전기신호 등의 분야가 결합된 시스템으로 대규모 자본을 효율적으로 이용해야만 하는 문제를 안고 있다. 특히, 자기부상열차 시스템은 고도의 기술력이 필요하며 현재 국내에서 개발 단계에 있는 시스템으로, 비용 관련 연구가 더욱 필요한 실정이다. 따라서 국외의 철도시스템 및 자기부상열차 시스템에 대한 수명주기비용 연구 동향을 바탕으로 하여 국내의 자기부상열차 시스템에 적용할 수 있는 수명주기비용에 관한 모델을 제안하고자 한다.

시스템엔지니어링 기법 적용에 따른 경량전철 전기시스템의 생명주기비용 절감에 관한 연구 (A study on the Life Cycle Cost reduction of the LRT's power systems based on the advanced Systems Engineering)

  • 최원찬;배준호;허재훈;주지영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1434-1439
    • /
    • 2011
  • The purpose of this study is based on the optimize the system life cycle cost apply to the advanced systems engineering techniques consideration thought to the system life cycle for the power system which is the one of the major component of the light rail transit system. Generally, the systems engineering techniques apply to the LRT's power systems are not optimize the whole life cycle cost of the power systems because systems engineering management activities are concentrate in performing the key-technology oriented at the construction stage of the dedicated power systems for light rail transit. Through this study, All the stakeholders can be utilize a this advanced systems engineering techniques which is fully considered the life cycle cost through the considering in whole system life cycle (such as concept, design, operation, maintenance and dispose stage as well as construction stage) and adopted by KSX ISO/IEC 15288 system life cycle processes.

  • PDF

교량의 생애주기비용 최적설계 (Optimal Life Cycle Cost Design of a Bridge)

  • 박장호;신영석
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.115-122
    • /
    • 2010
  • 최근 들어 교량과 같은 구조물에 대한 생애주기비용(Life Cycle Cost, LCC) 분석의 중요성이 점차 커지고 있다. 그러나 교량의 공용수명 동안 발생할 수 있는 생애주기비용은 설계 및 시공조건 그리고 사용환경에 따라 많은 불확실성을 내포하고 있기 때문에 정확히 예측하기 힘들다. 본 논문에서는 교량의 생애주기비용 최적설계를 위한 설계방법을 제시하였다. 교량의 총생애주기비용은 초기비용, 손상비용 유지관리비용, 보수/보강비용, 사용자비용, 해제/폐기비용의 합으로 산정하였다. 생애주기비용을 목적함수로 하고 도로교설계기준을 제약조건으로 최적화를 수행하였다. 초기비용은 종합불가정보 및 참고자료를 근거로 산출하였으며, 하중 및 부재에 대한 불확실성을 고려하기 위해 손상확률의 개념을 도입하여 손상비용을 산출하였다. 교량의 내하율곡선을 이용하여 교량의 보수/보강 비용을 추정하였으며, 차량운행비용과 시간지연비용으로부터 사용자비용을 산정하였다. 이로부터 교량에 대한 생애주기비용 최적설계를 수행하고 주요인자들에 대한 영향을 살펴보았다.

유지보수정보 주기를 고려한 KTX-1 모터블럭 개발품의 수명주기비용 예측 (The Life Cycle Cost Estimation for Domestic Products Motor Block of KTX-1 Considering Periodic Maintenance)

  • 윤차중;노명규;김재문
    • 전기학회논문지
    • /
    • 제62권2호
    • /
    • pp.288-292
    • /
    • 2013
  • This paper presents the result of life-cycle cost (LCC) estimation for domestic products propulsion control system (motor block unit) of KTX-1 considering periodic maintenance. Life cycle costing is one of the most effective approaches for the cost analysis of long-life systems such as the KTX-1. Life cycle costing includes the cost of concept design, development, manufacture, operation, maintenance and disposal. To estimate LCC for domestic products motor block unit, it was analyzed physical breakdown structure (PBS) on motor unit in view of maintenance cost and unit cost etc. As a results, life cycle cost on motor block unit increased moderately expect for periodical time when major parts are replaced at the same time. hereafter this results will be reflected in the domestic products being developed.