• Title/Summary/Keyword: Life testing

Search Result 1,286, Processing Time 0.025 seconds

Evaluation of Non Destructive Inspection Interval for Running Safety of Railway Axle (철도차량 안전성을 위한 주행 차축의 비파괴 검사주기 평가)

  • Kwon, Seok Jin;Lee, Dong Hyung;Seo, Jung Won;Kim, Jae Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.777-782
    • /
    • 2014
  • Usually, railway axles are designed for infinite life based on endurance limit of the material and the axle is not fractured immediately when a surface crack initiated. The railway axles have been inspected regularly by NDT such as ultrasonic testing, magnetic testing and eddy current testing and so on. Because the axle failure is profoundly influenced by the probability of missing a fatigue crack during an NDT inspection, it is necessary to evaluate the Non Destructive Interval of railway axle. In the present paper, the Non Destructive Interval of railway axle based on fracture mechanics and finite element analysis was investigated. It was shown that the Non Destructive Interval of railway axle can be evaluated using fracture mechanics approach and extended using NDT which a crack can detect clearly.

Adaptation and Implementation of Predictive Maintenance Technique with Nondestructive Testing for Power Plants (비파괴기술을 이용한 발전설비 예측정비 기법 도입과 적용)

  • Jung, Gye-Jo;Jung, Nam-Gun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.497-502
    • /
    • 2010
  • Many forces are pressuring utilities to reduce operating and maintenance costs without cutting back on reliability or availability. Many utility managers are re-evaluating maintenance strategies to meet these demands. To utilities how to reduce maintenance costs and extent the effective operating life of equipment, predictive maintenance technique can be adapted. Predictive maintenance has three types program which arc in-house program, engineering company program and mixed program. We can approach successful predictive maintenance program with "smart trust" concept.

Effect of Rail Surface Damage on Contact Fatigue Life (레일표면손상이 접촉피로수명에 미치는 영향)

  • Seo, Jung-Won;Lee, Dong-Hyong;Ham, Young-Sam;Kwon, Sung-Tae;Kwon, Seok-Jin;Cho, Ha-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.613-620
    • /
    • 2012
  • Rails are subjected to damage from rolling contact fatigue, which leads to defects such as cracks. Rolling contact fatigue damages on the surface of rail such as head check, squats are one of growing problems. Another form of rail surface damage, known as "Ballast imprint" has become apparent. This form of damage is associated with ballast particles becoming trapped between the wheel and the surface of rail. These defects are still one of the key reasons for rail maintenance and replacement. In this study, we have investigated whether the ballast imprint is an initiator of head check type cracks and effect of defect size using Finite element analysis. The FE analysis were used to investigate stresses and strains in subsurface of defects according to variation of defect size. Based on loading cycles obtained from FE analysis, fatigue analysis for each point was carried out.

The Durability Performance Evaluation of Automotive Components in the Virtual Testing Laboratory (차량 부품의 내구성 평가를 위한 가상시험실 구축)

  • Kim, Gi-Hoon;Kang, Woo-Jong;Kim, Dae-Sung;Ko, Woong-Hee;Lim, Jae-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.68-74
    • /
    • 2006
  • The evaluation of durability performance in Virtual Testing Laboratory(VTL) is a new concept of vehicle design, which can reduce the automotive design period and cost. In this study, the multibody dynamics model of a car is built with a reverse engineering design. Hard points and masses of components are measured by a surface scanning device and imported into CAD system. In order to simulate the non-linear dynamic behavior of force elements such as dampers and bushes, components and materials are tested with specialized test equipments. An optimized numerical model for the damping behavior is used and the hysteresis of bush rubber is considered in the simulation. Loads of components are calculated in VTL and used in the evaluation of durability performance. In order to verify simulation results, loads of components in the vehicle are measured and durability tests are performed.

Effect of Kinetic Parameters on Simultaneous Ramp Reactivity Insertion Plus Beam Tube Flooding Accident in a Typical Low Enriched U3Si2-Al Fuel-Based Material Testing Reactor-Type Research Reactor

  • Nasir, Rubina;Mirza, Sikander M.;Mirza, Nasir M.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.700-709
    • /
    • 2017
  • This work looks at the effect of changes in kinetic parameters on simultaneous reactivity insertions and beam tube flooding in a typical material testing reactor-type research reactor with low enriched high density ($U_3Si_2-Al$) fuel. Using a modified PARET code, various ramp reactivity insertions (from $0.1/0.5 s to $1.3/0.5 s) plus beam tube flooding ($0.5/0.25 s) accidents under uncontrolled conditions were analyzed to find their effects on peak power, net reactivity, and temperature. Then, the effects of changes in kinetic parameters including the Doppler coefficient, prompt neutron lifetime, and delayed neutron fractions on simultaneous reactivity insertion and beam tube flooding accidents were analyzed. Results show that the power peak values are significantly sensitive to the Doppler coefficient of the system in coupled accidents. The material testing reactor-type system under such a coupled accident is not very sensitive to changes in the prompt neutron life time; the core under such a coupled transient is not very sensitive to changes in the effective delayed neutron fraction.

Towards a digital twin realization of the blade system design study wind turbine blade

  • Baldassarre, Alessandro;Ceruti, Alessandro;Valyou, Daniel N.;Marzocca, Pier
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.271-284
    • /
    • 2019
  • This paper describes the application of a novel virtual prototyping methodology to wind turbine blade design. Numeric modelling data and experimental data about turbine blade geometry and structural/dynamical behaviour are combined to obtain an affordable digital twin model useful in reducing the undesirable uncertainties during the entire turbine lifecycle. Moreover, this model can be used to track and predict blade structural changes, due for example to structural damage, and to assess its remaining life. A new interactive and recursive process is proposed. It includes CAD geometry generation and finite element analyses, combined with experimental data gathered from the structural testing of a new generation wind turbine blade. The goal of the research is to show how the unique features of a complex wind turbine blade are considered in the virtual model updating process, fully exploiting the computational capabilities available to the designer in modern engineering. A composite Sandia National Laboratories Blade System Design Study (BSDS) turbine blade is used to exemplify the proposed process. Static, modal and fatigue experimental testing are conducted at Clarkson University Blade Test Facility. A digital model was created and updated to conform to all the information available from experimental testing. When an updated virtual digital model is available the performance of the blade during operation can be assessed with higher confidence.

The Role of Information and Communication Technology to Combat COVID-19 Pandemic: Emerging Technologies, Recent Developments and Open Challenges

  • Arshad, Muhammad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.93-102
    • /
    • 2021
  • The world is facing an unprecedented economic, social and political crisis with the spread of COVID-19. The Corona Virus (COVID-19) and its global spread have resulted in declaring a pandemic by the World Health Organization. The deadly pandemic of 21st century has spread its wings across the globe with an exponential increase in the number of cases in many countries. The developing and underdeveloped countries are struggling hard to counter the rapidly growing and widespread challenge of COVID-19 because it has greatly influenced the global economies whereby the underdeveloped countries are more affected by its devastating impacts, especially the life of the low-income population. Information and Communication Technology (ICT) were particularly useful in spreading key emergency information and helping to maintain extensive social distancing. Updated information and testing results were published on national and local government websites. Mobile devices were used to support early testing and contact tracing. The government provided free smartphone apps that flagged infection hotspots with text alerts on testing and local cases. The purpose of this research work is to provide an in depth overview of emerging technologies and recent ICT developments to combat COVID-19 Pandemic. Finally, the author highlights open challenges in order to give future research directions.

Epidemiological application of the cycle threshold value of RT-PCR for estimating infection period in cases of SARS-CoV-2

  • Soonjong Bae;Jong-Myon Bae
    • Journal of Medicine and Life Science
    • /
    • v.20 no.3
    • /
    • pp.107-114
    • /
    • 2023
  • Epidemiological control of coronavirus disease 2019 (COVID-19) is needed to estimate the infection period of confirmed cases and identify potential cases. The present study, targeting confirmed cases for which the time of COVID-19 symptom onset was disclosed, aimed to investigate the relationship between intervals (day) from symptom onset to testing the cycle threshold (CT) values of real-time reverse transcription-polymerase chain reaction. Of the COVID-19 confirmed cases, those for which the date of suspected symptom onset in the epidemiological investigation was specifically disclosed were included in this study. Interval was defined as the number of days from symptom onset (as disclosed by the patient) to specimen collection for testing. A locally weighted regression smoothing (LOWESS) curve was applied, with intervals as explanatory variables and CT values (CTR for RdRp gene and CTE for E gene) as outcome variables. After finding its non-linear relationship, a polynomial regression model was applied to estimate the 95% confidence interval values of CTR and CTE by interval. The application of LOWESS in 331 patients identified a U-shaped curve relationship between the CTR and CTE values according to the number of interval days, and both CTR and CTE satisfied the quadratic model for interval days. Active application of these results to epidemiological investigations would minimize the chance of failing to identify individuals who are in contact with COVID-19 confirmed cases, thereby reducing the potential transmission of the virus to local communities.

Development of the Burnout Scale for General Hospital Nurses (종합병원 간호사의 소진 측정도구 개발)

  • Lee, Sun-Mi;Shin, Hye Sook
    • Journal of East-West Nursing Research
    • /
    • v.29 no.2
    • /
    • pp.95-105
    • /
    • 2023
  • Purpose: The purpose of this study was to develop a measurement tool for burnout in general hospital nurses and verify its reliability and validity. Methods: Construct factors were extracted through an extensive literature review and in-depth interviews with nurses. Psychometric testing was conducted with 550 nurses in a general hospital. Data were analyzed using validity and reliability testing. Results: As a result of factor analysis, 4 factors and 26 items were selected. The burnout factors of general hospital nurses were professional quality of life, work environment excellence, job satisfaction, and negative emotions. The overall coefficient of determination was 46.38%. These factors were validated through convergent, discriminant and concurrent validity testing. The internal consistency reliability was acceptable (Cronbach's α=.91). Conclusions: The Burnout Scale for General Hospital Nurses is a valid and reliable tool that contributes to the assessment of burnout in general hospital nurses. This scale is expected to be used in burnout practice and research of general hospital nurses.

A Study on Life Prediction of Hydraulic Piston Pump (유압 피스톤 펌프의 수명 예측 연구)

  • Kim, Kyungsoo;Lee, Jihwan;Kang, Myeongcheol;Ryuh, Beomsahng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.607-613
    • /
    • 2018
  • Hydraulic systems are widely used in the field of defense, construction machinery, agricultural machinery, and general industries, due to various advantages such as quick response speed and precision control. The defense equipments such as light rescue vehicle is operated in very harsh environments, so hydraulic components used in defense equipment are required to have very high reliability. In particular, hydraulic piston pump is very important component in a hydraulic systems, so life prediction of pump is essential. Therefore, in this study, we analyze the potential failure and the main failure mode of the hydraulic piston pump for the light rescue vehicle through the FMEA analysis, and predict the life of the pump by the accelerated life test considering the usage conditions.