• Title/Summary/Keyword: Life degradation

Search Result 1,403, Processing Time 0.026 seconds

Accelerated Life Test of Knife Protection Fabrics for Cut Resistance (절단 방지용 방검소재의 가속수명시험)

  • Chang, Gap-Shik;Jung, Ye-Lee;Jeon, Byong-Dae
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.270-275
    • /
    • 2015
  • Purpose : UHMWPE (Ultra-high-molecular-weight-polyethylene) is one of the most widely used material in knife protection clothes because of high strength, elasticity, and light weight. The purpose of this study is to develop the accelerated life test method and predict the lifetime for the knife protection fabric composed by UHMWPE. Methods : In this study, degradation characteristics of UHMWPE fibers and knife protection fabric for cut resistance were evaluated under the hydrolysis and photo-degradation conditions. It was found out that the degradation rate of retained tensile strength was more significant in the photo-degradation than hydrolysis. Therefore, the failure time was determined as the time that the retained tensile strength in photo-degradation is less than 50%. Considering an acceleration factor for irradiance and exposure time, the lifetime was predicted from the calculated failure time. Results : As a result of the accelerated life test, the $B_{10}$ lifetime of knife protection fabric composed by UHMWPE fibers is estimated as 2.8 years for a 90% statistical confidence level. Conclusion: Since the lifetime is predicted by the view-point of radiant exposure in this study, there is a possibility that the estimated lifetime may differ from the actual lifetime. However, it is considered as an useful methodology to estimate the long-term lifetime of knife protection fabrics.

Assessment of Material Risk and Residual Life of CrMoV Turbine Rotor Considering High Temperature Material Degradation (고온 재질 열화도를 반영한 CrMoV 터빈로터의 재료 위험도 및 잔여수명 평가)

  • Ma, Young-Wha;Lee, Jin-Sang;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.33-41
    • /
    • 2006
  • Material degradation should be considered to assess integrity and residual life of high temperature equipments. However, the property data reflecting degradation are not sufficient for practical use. In this study measuring properties for 1Cr-1Mo-0.25V forging steel generally used for turbine rotor was carried out. Degradation was simulated by isothermal ageing. heat treatment and variation of microstructure was observed. Mechanical properties such as tensile strength, impact energy, hardness and fracture toughness were measured. Assuming a semi-elliptical surface crack at the bore hole in a turbine rotor, material risk was estimated by using the aged material property data obtained in this study. Safety margin was decreased and life of the rotor was exhausted. This procedure can be used in assessing the residual life of a turbine rotor due to material degradation.

Storage Life Estimation of Next Infrared Flare Material (차기 적외선 섬광제 저장수명 예측)

  • Back, Seungjun;Son, Youngkap;Kim, Namjin;Kwon, Taesoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.311-318
    • /
    • 2016
  • This paper shows storage life estimation of next IR(infrared) flare material through accelerated degradation tests. Three temperature conditions for the accelerated degradation tests are 55, 65 and $75^{\circ}C$. Six performances of IR flare material are burning time, IR peak/continuous Intensity, total energy of near/mid-IR and color ratio, and they were measured after the tests. Storage life of the IR flare material was estimated through both analyzing the degradation data of those performances and applying distribution-based degradation models to the data. Over 30 years of storage life at $20^{\circ}C$ is estimated in terms of IR peak intensity with reliability 0.99 and confidence level 99 %. Additionally, 10 years of storage period at $21^{\circ}C$ would be equivalent to 68 days of accelerated test at $65^{\circ}C$ from the activation energy in Arrhenius model.

Effect of Material Degradation and Austenite Grain Coarsening on the Creep life Prediction in 3.5 Ni-Cr-Mo-V Steel (3.5Ni-Cr-Mo-V 강의 크리프 수명예측에 재질열화 및 오스테나이트 결정립 조대화가 미치는 영향)

  • 홍성호;조현춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2837-2845
    • /
    • 1994
  • Several methods have been developed to predict on the remaining life of the old power plants. However, Larson-Miller parameter, one of existing creep life prediction methods, has not reflected the effect of material degradatioin and grain size. So this study has been carried out to research the effects of material degradation and austenite grain coarsening on the life prediction of 3.5Ni-Cr-Mo-V steel. An experimental result shows that carbide coarsening has no significant effects on the creep rupture life and the Larson-Miller parameter, but grain coarsening has an important influence on the creep ruptrure life and the Larson-Miller parameter. Therefore Larson-Miller constant, K should be determined to consider on the chemical composition and the grain size of materials.

Effect of Rhamnolipids on Degradation of Anthracene by Two Newly Isolated Strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B

  • Cui, Chang-Zheng;Zeng, Chi;Wan, Xia;Chen, Dong;Zhang, Jia-Yao;Shen, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.63-66
    • /
    • 2008
  • Anthracene is a PAH that is not readily degraded, plus its degradation mechanism is still not clear. Thus, two strains of anthracene-degrading bacteria were isolated from long-term petroleum-polluted soil and identified as Sphingomonas sp. 12A and Pseudomonas sp. 12B by a 16S rRNA sequence analysis. To further enhance the anthracene-degrading ability of the two strains, the biosurfactants produced by Pseudomonas aeruginosa $W_3$ were used, which were characterized as rhamnolipids. It was found that these rhamnolipids dramatically increased the solubility of anthracene, and a reverse-phase HPLC assay showed that the anthracene degradation percentage after 18 days with Pseudomonas sp. 12B was significantly enhanced from 34% to 52%. Interestingly, their effect on the degradation by Sphingomonas sp. 12A was much less, from 35% to 39%. Further study revealed that Sphingomonas sp. 12A also degraded the rhamnolipids, which may have hampered the effect of the rhamnolipids on the anthracene degradation.

Electric Current Accelerated Degradation Test Design for OLED TV (OLED TV Panel의 전류가속열화시험 설계)

  • You, Ji-Sun;Lee, Duek-Jung;Oh, Chang-Suk;Jang, Joong Soon
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • Purpose: The purpose of this study is to estimate the life time of OLED TV panel through electric current ADT(Accelerated Degradation Test). Methods: We performed accelerated degradation test for OLED TV Panel at the room temperature to avoid high temperature impact on the luminance. Results: we got more accurately the life time of the OLED TV when we applied ADT without temperature factor than including both current and temperature. Conclusion: Until now, the ADT of the OLED TV has been conducted with temperature and current at the same time for reducing test time and costs. We estimate incorrect life time when the temperature is adopted as an accelerated factor. Due to the high temperature impact on the luminance of the OLED TV panel. So as to solve this problem, we discard temperature and use electric current only.

Biodegradation of Feather Waste Keratin by the Keratin-Degrading Strain Bacillus subtilis 8

  • He, Zhoufeng;Sun, Rong;Tang, Zizhong;Bu, Tongliang;Wu, Qi;Li, Chenlei;Chen, Hui
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.314-322
    • /
    • 2018
  • Bacillus subtilis 8 is highly efficient at degrading feather keratin. We observed integrated feather degradation over the course of 48 h in basic culture medium while studying the entire process with scanning electron microscopy. Large amounts of ammonia, sulfite, and $\text\tiny{L}$-cysteic acid were detected in the fermented liquid. In addition, four enzymes (gamma-glutamyltranspeptidase, peptidase T, serine protease, and cystathionine gamma-synthase) were identified that play an important role in this degradation pathway, all of which were verified with molecular cloning and prokaryotic expression. To the best of our knowledge, this report is the first to demonstrate that cystathionine gamma-synthase secreted by B. subtilis 8 is involved in the decomposition of feather keratin. This study provides new data characterizing the molecular mechanism of feather degradation by bacteria, as well as potential guidance for future industrial utilization of waste keratin.

Evaluation of the Fatigue Life for Carbon/Epoxy Composite Material by the Residual Strength Degradation Analysis (탄소섬유/에폭시 복합재료의 잔류강도 저하해석에 의한 피로수명 평가)

  • 심봉식;성낙원;옹장우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1908-1918
    • /
    • 1991
  • Fatigue tests have been carried out to measure the degradation of the residual strength and the fatigue life in carbon/epoxy (0/45/90/-45)$_{2s}$ composite materials. Theoretical predictions of residual strength and fatigue life were compared with experimental results. Distribution characteristics were studied using the probability of failure based on the cumulative distribution function and median rand. The static ultimate strength of carbon/epoxy composites used herein is observed to be relatively higher than that of existing similar composites ; while fatigue life is shorter due to the brittleness of matrix. The fatigue life obtained in these experiments is shorter than that estimated by residual strength degradation model when the stress level above 0.6 For the stress level of 0.6, the experimental value was abruptly increased. The cumulative distribution function for the static ultimate strength is well correlated to that for the strength converted from the measured fatigue life. Also, the predicted distribution of residual strength shows good agreement with the experimental results. Therefore, it is proven that the residual strength degradation model is reasonable.e.

Isolation of an Isocarbophos-Degrading Strain of Arthrobacter sp. scl-2 and Identification of the Degradation Pathway

  • Li, Rong;Guo, Xinqiang;Chen, Kai;Zhu, Jianchun;Li, Shunpeng;Jiang, Jiandong
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1439-1446
    • /
    • 2009
  • Isocarbophos is a widely used organophosphorus insecticide that has caused environmental pollution in many areas. However, degradation of isocarbophos by pure cultures has not been extensively studied, and the degradation pathway has not been determined. In this paper, a highly effective isocarbophos-degrading strain, scl-2, was isolated from isocarbophos-polluted soil. The strain scl-2 was preliminarily identified as Arthrobacter sp. based on its morphological, physiological, and biochemical properties, as well as 16S rDNA analysis. The strain scl-2 could utilize isocarbophos as its sole source of carbon and phosphorus for growth. One hundred mg/l isocarbophos could be degraded to a non detectable level in 18 h by scl-2 in cell culture, and isofenphos-methyl, profenofos, and phosmet could also be degraded. During the degradation of isocarbophos, the metabolites isopropyl salicylate, salicylate, and gentisate were detected and identified based on MS/MS analysis and their retention times in HPLC. Transformation of gentisate to pyruvate and fumarate via maleylpyruvate and fumarylpyruvate was detected by assaying for the activities of gentisate 1,2-dioxygenase (GDO) and maleylpyruvate isomerase. Therefore, we have identified the degradation pathway of isocarbophos in Arthrobacter sp. scl-2 for the first time. This study highlights an important potential use of the strain scl-2 for the cleanup of environmental contamination by isocarbophos and presents a mechanism of isocarbophos metabolism.

Service Life Prediction for Building Materials and Components with Stochastic Deterioration (추계적 열화모형에 의한 건설자재의 사용수명 예측)

  • Kwon, Young-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.4
    • /
    • pp.61-66
    • /
    • 2007
  • The performance of a building material degrades as time goes by and the failure of the material is often defined as the point at which the performance of the material reaches a pre-specified degraded level. Based on a stochastic deterioration model, a performance based service life prediction method for building materials and components is developed. As a stochastic degradation model, a gamma process is considered and lifetime distribution and service life of a material are predicted using the degradation model. A numerical example is provided to illustrate the use of the proposed service life prediction method.