• Title/Summary/Keyword: Life cycle impact analysis

Search Result 201, Processing Time 0.024 seconds

The Effects of Slab Size on Pavement Life Cycle Cost

  • Parsons, Timothy A.;Hall, Jim W.Jr
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.49-54
    • /
    • 2006
  • The purpose of this study was to determine the effect of expansion joint spacing (slab size) on the life cycle costs of owning Portland Cement Concrete (PCC) airfield pavements. Previous research has shown that slab size has a statistically significant impact on pavement performance. A probabilistic life cycle cost analysis was performed to determine if the effect of slab size on pavement performance would affect the total cost of ownership of PCC pavements. Data from 48 Pavement Condition Index (PCI) inspections of military and civilian airfields were used to develop probability-of-distress-by-condition curves, which were then used to develop probabilistic cost-of-repair-by-condition curves. A present worth life cycle cost analysis was then performed for various slab sizes, using construction costs, rehabilitation costs, and maintenance costs. Maintenance costs were determined by assuming a condition deterioration rate appropriate for each slab size and applying the cost-by-condition curves. The probabilistic cost-of-repair-by-condition curves indicated that smaller slabs are more expensive to repair on a unit cost basis. Life cycle cost analysis showed that larger slabs have a higher total cost of ownership than smaller slabs due to a faster rate of deterioration.

  • PDF

Comparison of the Incineration Processes of Domestic Wastes Based on Life Cycle Assessment (생활폐기물(生活廢棄物) 소각(燒却) 처리공정(處理工程)의 전과정(全科程) 평가(平價)에 의한 비교(比較))

  • Jung, Woo-Jung;Lee, Sang-Don;Kim, Dong-Su
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.6
    • /
    • pp.443-453
    • /
    • 2005
  • For the purpose of the comparative environmental estimation of the incineration processes for domestic wastes, environmental impacts for several incineration processes for one ton of domestic wastes have been estimated by employing life cycle assessment as the environmental impact assessment method. The scheme of minimum production of environmental pollutants has been considered for three different incineration processes. The evaluation for latent influence on environment was carried out by using CML(Center of Environmental Science) method which was developed by University of Leyden in Netherlands based on the equivalency factor suggested by Korea Accreditation Board. The result of life cycle assessment has showed that the total cost analysis according to the amount of incinerating waste was dependent on the operating conditions of incineration process. In addition, the annual running cost for the incineration of one ton of wastes was estimated to be negatively dependent on the amount of wastes. The degree of environmental pollution was mainly due to the kinds of the wastes rather than by the amount of wastes.

Life cycle determination of water distribution system using life cycle energy analysis (생애주기 에너지 분석을 이용한 상수관망의 생애주기 결정)

  • Lee, Seung-Yub;Yoo, Do-Guen;Kim, Joong-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.11-21
    • /
    • 2015
  • When designing Water Distribution System (WDS), determination of life cycle for WDS needs to be preceded. And designer should conduct comprehensive design including maintenance and management strategies based on the determined life cycle. However, there are only a few studies carried out until now, and criteria to determine life cycle of WDS are insufficient. Therefore, methodology to determine life cycle of WDS is introduced in this study by using Life Cycle Energy Analysis (LCEA). LCEA adapts energy as an environmental impact criterion and calculates all required energy through the whole life cycle. The model is build up based on the LCEA methodology and model itself can simulate the aging and breakage of pipes through the target life cycle. In addition the hydraulic analysis program EPANET2.0 is linked to developed model to analyze hydraulic factors. Developed model is applied to two WDSs which are A WDS and B WDS. Model runs for 1yr to maximum 100yr target life cycle for both WDSs to check the energy tendency as well as to determine optimal life cycle. Results show that 40yr and 54yr as optimal life cycle for each WDS, and tendency shows the effective energy is keep changing according to the target life cycle. Introduced methodology is expected to use as an alternative option for determining life cycle of WDS.

Life Cycle Assessment for National Electricity Generation Systems (국가전력생산 시스템에 대한 전 과정 영향평가)

  • 김태운;김성호;정환삼;하재주;민경란;고순현
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.05a
    • /
    • pp.353-358
    • /
    • 2004
  • In recent, the trends in national energy Policy are established in the context of the integrated risk estimation for various national electricity generating options. The approach takes account of health, environmental, economic, and social aspects of electricity generation systems. In the present work, nuclear, coal, and LNG sources are chosen because these hold more than 90% of national total electricity generation in a descending order. A life cycle assessment (LCA) methodology is used for comparing environmental impacts of these options during the life cycle such as construction, operation as well as disposal stages. Here, the LCA consists of life cycle inventory analysis, classification/selection process of impact categories, characterization process, and normalization process of each category. LCA can be an useful tool for environmental impact assessment of future national energy options. At the planning stage of future energy Policies, the results of LCA would be taken into consideration. According to data update at the construction and disposal stages, the LCA needs to be conducted iteratively.

  • PDF

Comparative LCA(life cycle assessment) between two different model of Electric Motor Unit(EMU) (서로다른모델의 전동차에 대한 비교 전과정평가)

  • Kim, Jin-Yong;Choi, Yo-Han;Kim, Young-Ki;Lee, Kun-Mo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.6-14
    • /
    • 2007
  • The objective of this research is to comparative LCA(life cycle assessment) between two different model of Electric Motor Unit(EMU).the environmental impact of Aluminum body Electric Motor Unit(EMU) and Stainless Steel(STS) body Electric Motor Unit(EMU). LCA process consists of four steps which are goal, scope definition, life cycle impact analysis(LCIA) and life cycle interpretation. ISO 14044 provides the LCA standard method which can be conducted by using comparative LCA. From the research it is foung that the Aluminium Body Electric Motor Unit (EMU) is 3.6ton heaver than Stainless Steel(STS) body Electric Motor Unit(EMU). The system boundary of both Electric Motor Unit (EMU) are same life span and travel same distance. These both Electric Motor Unit (EMU) has same kind of environmental impact which is maximum Ozone Depletion(OD). During using period of these two models, the Aluminium Body Electric Motor Unit(EMU) has more global warming(GW) effect but Stainless Steel(STS) body Electric Motor Unit(EMU) has more Ozone Depletion(OD) effect. The above result is obtained by using LCA software PASS verson 3.1.3.

  • PDF

Correlation Analysis on $CO_2$ Emission and Cost of Energy Resources and Life Cycle Assessment (에너지자원의 이산화탄소 배출량과 비용의 상관관계 분석과 전과정평가)

  • Kim, Heetae;Kim, Eun Chul;Ahn, Tae Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.153-153
    • /
    • 2010
  • The world is moving towards a post-carbon society and needs clean and renewable energy for sustainable development. There are many methodological approaches which are helping this shift based on analyzed data about energy resources and which focus on limited types of energy including liquid fossil, solid fossil, gaseous fossil, and biomass (e.g. IPCC Guidelines, ISO 14064-1, WRI Protocol, etc.). We should also consider environmental impact (e.g. greenhouse gas emissions, water use, etc.) and the economic cost of the renewable energy to make a better decision. Recently, researchers have addressed the environmental impact of new technologies which include photovoltaics, wind turbines, hydroelectric power, and biofuel. In this work, we analyze the environmental impact with a carbon emission factor to present a correlation between $CO_2$ emission and the cost of energy resources standardized by the energy output. In addition, we reviewed Life Cycle Assessment (LCA) as another methodology. Researchers who are studying energy systems have ignored the impacts of entire energy systems, e.g. the extraction and processing of fossil fuels. In power sector, the assessment should include extraction, processing, and transportation of fuels, building of power plants, production of electricity, and waste disposal. Therefore LCA could be more suitable tool for energy cost and environmental impact estimation.

  • PDF

An E-score Development Methodology for Life Cycle Impact Assessment

  • Young-Min Park;Jai-Rip Cho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.68
    • /
    • pp.51-65
    • /
    • 2001
  • This study is to make LCIA(Life Cycle Impact Assessment) easier as a methodology of environmental scores(called E-score) that integrated environmental load of each emission substance based on environmental damage such as in human health, ecosystem and resources category. The concept is to analyzes the LCI(Life Cycle Inventory) and defines the level of environment damages for human health, ecosystem and resources to objective impact assessment standard, and makes the base of marginal damage to calculate the damage factor, which can present the indication that can establish the standard value of environmental impact. First, damages to human health are calculated by fate analysis, effect analysis and damage analysis to get the damage factor of health effect as a DALY(Disability Adjusted Life Years) unit. Second, damages to ecosystem are calculated by fate analysis, effect analysis and damage analysis to get the damage factor of the effect as a PDF(Potentially Disappeared Fraction) unit through linking potentially increased disappeared fraction. Third, damages to resources are carried out by resource analysis and damage analysis for linking the lower fate to surplus energy conception to get damage factor as a MJ(Mega Joule) unit. For the ranking of relative environment load level each other, LCIA can be carried out effectively by applying this E-score methodology to the particular emission substances. A case study has been introduced for the emission substances coming out of a tire manufacturer in Korea. It is to show how to work the methodology. Based on such study result, product-designers or producers now can apply the E-scores presented in this study to the substances of emission list, and then calculate the environment load of the product or process in advance at any time and can see the environment performance comparatively and expected to contribute to the environmental improvement in view of environmental pollution prevention.

  • PDF

Life Cycle Assessment on the End-of-Life Vehicle Treatment System in Korea (국내 폐자동차 처리시스템에 대한 전과정평가)

  • Hong, Seok-Jin;Jeong, Kee-Mo;Hong, John-Hee;Yun, Ju-Ho;Hur, Tak
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.105-112
    • /
    • 2005
  • This study aims at evaluating the environmental impacts stemmed from the End-of-Life Vehicle(ELV) treatment systems in Korea, using Life Cycle Assessment(LCA) method. In this study, both environmental burden from the ELV dismantling process & recycling processes and environmental benefit which were derived from the avoided environmental impacts by substituting recycled materials for virgin materials were considered. First of all, the key issues which were defined as the environmental aspects that account for more than $1\%$ out of the total environmental impacts were identified from the Life Cycle Impact Assessment(LCIA). $CO_2$, crude oil, natural gas, coal, etc. were found out to be the key issue parameters. From the LCI Analysis and LCIA studies, it was shown that the significant environmental aspects were related with the recycling process of ferro scrap, the shredding process of compressed car bodies and the dismantling process of end-of-life engines. In particular, the recycling process of ferro scrap has the most significant effects on the environmental impacts of the ELV treatment systems. Based on these results, it is recommended to improve the recycling process of ferro scrap in order to make the ELV treatment systems more environmentally sound.

Application of Probabilistic Health Risk Analysis in Life Cycle Assessment -Part I : Life Cycle Assessment for Environmental Load of Chemical Products using Probabilistic Health Risk Analysis : A Case Study (전과정평가에 있어 확률론적 건강영향분석기법 적용 -Part II : 화학제품의 환경부하 전과정평가에 있어 건강영향분석 모의사례연구)

  • Park, Jae-Sung;Choi, Kwang-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.203-214
    • /
    • 2000
  • Health risk assessment is applied to streamlining LCA(Life Cycle Assessment) using Monte carlo simulation for probabilistic/stochastic exposure and risk distribution analysis caused by data variability and uncertainty. A case study was carried out to find benefits of this application. BTC(Benzene, Trichloroethylene, Carbon tetrachloride mixture alias) personal exposure cases were assumed as production worker(in workplace), manager(in office) and business man(outdoor). These cases were different from occupational retention time and exposure concentration for BTC consumption pattern. The result of cancer risk in these 3 scenario cases were estimated as $1.72E-4{\pm}1.2E+0$(production worker; case A), $9.62E-5{\pm}1.44E-5$(manger; case B), $6.90E-5{\pm}1.16E+0$(business man; case C), respectively. Portions of over acceptable risk 1.00E-4(assumed standard) were 99.85%, 38.89% and 0.61%, respectively. Estimated BTC risk was log-normal pattern, but some of distributions did not have any formal patterns. Except first impact factor(BTC emission quantity), sensitivity analysis showed that main effective factor was retention time in their occupational exposure sites. This case study is a good example to cover that LCA with probabilistic risk analysis tool can supply various significant information such as statistical distribution including personal/environmental exposure level, daily time activity pattern and individual susceptibility. Further research is needed for investigating real data of these input variables and personal exposure concentration and application of this study methodology.

  • PDF

Comparison Analysis of Life Cycle Assessment and Simplified-LCA and Application Scheme on Rail Industry (전과정평가(LCA)와 간략전과정평가(S-LCA)의 비교분석 및 철도산업에의 활용방안)

  • Yang Yun-Hee;Lee Kun-Mo;Jeong In-Tae;Kim Yong-Gi
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.193-198
    • /
    • 2005
  • According to the ISO 14040(1997), Life Cycle Assessment is not the tool only focusing on the emissions from the manufacturing processes of a product, but the tool also expressing environmental adverse impact quantitatively through products entire life cycle (i.e. raw material acquisition, manufacturing, transportation, use, and end-of-life stage). Because the LCA for EMUs(Electrical Multiple Units), however, requires astronomical time and cost for collecting big amount of data. it is inevitable to bring in the simplified LCA methodology, In this study, we introduced standardized methodology of LCA in the world, and found appropriate S-LCA methodology for EMUs. Furthermore, we recommended how to evaluate the environmental impact of EMUs in detail and precisely, using the S-LCA.

  • PDF