• Title/Summary/Keyword: Life cycle cost analysis

Search Result 582, Processing Time 0.032 seconds

Life Cycle Cost Analysis of Steel Railroad Bridges Under Corrosive Environment (강철도교의 부식영향에 따른 생애주기비용분석)

  • 이종수;유선미;조선규;김만철
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.684-689
    • /
    • 2002
  • This paper represents the life-cycle cost(LCC) of steel bridges which are located on the train-network. Corrosion problems are mainly considered in the steel members such as steel plate girder, box girder, truss and arch. Based on the current value, initial construction cost, maintenance cost and demolition cost are calculated and life-cycle costs are formulated for the several types of bridges. From the comparison on each LCC, an effective painting method is recommended for reducing the LCC of steel bridges. Even though the initial cost of Super Weather Resistance Heavy Duty Paintings (Resin Fluoride) is expensive, because of the long endurance, the LCC of steel bridges painted with Super Weather Resistance Heavy Duty Paintings (Resin Fluoride) is less than that painted with General Heavy Duty (Rubber Chloride).

  • PDF

A Study on the Analysis of LCA tools for Eco-Building (친환경 건축물의 LCA 평가도구 비교분석 연구)

  • Son, Woo-Jin;Kang, Hae-Jin;Rhee, Eon-Ku
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.394-399
    • /
    • 2009
  • Since some decades ago, there has been a concern for resource depletion and environmental pollution associated with building properties. In addressing such impact of the built environment, there is a recognition of the existence of alternative building materials, fuels for energy supply as well as technologies for waste handling and disposal. Nevertheless, for long time, the choice between such alternatives was dictated by factors such as differences in prices and aesthetic values. A new important dimension in discriminating between different options is the environmental dimension. This aspect is important since buildings are one of the spatially big new additions to the natural environment that consume a lot of materials and energy during their long lifetime. Thus, with the environmental dimension kept in mind, a existing cost estimation needs to be changed. A new cost assessment method, Life Cycle Cost, should calculate overall costs with dimensional factors: investment and utility costs as well as maintenance costs over the lifetime of the building. Aiming to give an overview of the present status of Building Life Cycle Assessment(LCA) tools as a basis for further research and development including economic performance, this paper describes and compares 3 different tools for Life Cycle Assessment(LCA) and economic analysis of the green buildings. This paper compared these approaches based on various aspects. These include economic analysis method, evaluation duration, data of results(index). Use of the comparison analysis is to produce a better picture and indicate profits and shortcomings for the tools as a group; thus providing important direction improvement of LCA tool as well as further research and development of this group of tools.

  • PDF

Life Cycle Cost Analysis Models for Bridge Structures using Artificial Intelligence Technologies (인공지능기술을 이용한 교량구조물의 생애주기비용분석 모델)

  • Ahn, Young-Ki;Im, Jung-Soon;Lee, Cheung-Bin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.189-199
    • /
    • 2002
  • This study is intended to propose a systematic procedure for the development of the conditional assessment based on the safety of structures and the cost effective performance criteria for designing and upgrading of bridge structures. As a result, a set of cost function models for a life cycle cost analysis of bridge structures is proposed and thus the expected total life cycle costs (ETLCC) including initial (design, testing and construction) costs and direct/indirect damage costs considering repair and replacement costs, human losses and property damage costs, road user costs, and indirect regional economic losses costs. Also, the optimum safety indices are presented based on the expected total cost minimization function using only three parameters of the failure cost to the initial cost (${\tau}$), the extent of increased initial cost by improvement of safety (${\nu}$) and the order of an initial cost function (n). Through the enough numerical invetigations, we can positively conclude that the proposed optimum design procedure for bridge structures based on the ETLCC will lead to more rational, economical and safer design.

A Study on Cost Avoidance and Total Life Cycle Cost to Analysis of Effectiveness of the Management of DMSMS (부품단종관리 효용성 분석을 위한 회피비용 및 총수명주기비용에 대한 연구)

  • Kim, Si-Ok;Paik, Won-Chul;Kim, Dong-Gil;Kim, Heung-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.791-798
    • /
    • 2020
  • The share of advanced technology in modern weapon systems are gradually increasing, and life cycle of components are shortened due to the rapid speed of technological development. On the other hand, the weapon systems have a characteristic that takes a long time in the requirement stage of weapon to the operation and maintenance stage. Due to inevitably, obsolescence of the main components for parts occurs in the acquisition phase. The obsolescence parts could cause delays in mass production schedules, and further adversely affects operational availability due to poor supply of repair parts during in the maintenance phase. However, business managers are obliged to maximize the performance while minimizing the cost of the total life cycle of the design, production, and operation stages. It is necessary to establish and implement an appropriate components and parts of life cycle management plan. In this research, we analyzed the effectiveness of parts obsolescence management through cost avoidance and total life cycle cost that can be reduced through proper parts obsolescence management.

The Effect of Eco-friendly Characteristics on the Price of Office Buildings (친환경 특성이 오피스 빌딩 가격에 미치는 영향)

  • So, Soung Kue;Cho, Joo Hyun
    • Korea Real Estate Review
    • /
    • v.28 no.2
    • /
    • pp.49-64
    • /
    • 2018
  • The purpose of this study is to analyze the effect of eco-friendly building certification grade on the price and cost of office in Seoul office building. For this purpose, multiple regression analysis is used to examine the prices of buildings. In order to identify the effect of environmental cost reduction of buildings with high eco-friendly certification, we also performed LCC (Life Cycle Cost) + LCA (Life Cycle Assessment) analysis. Results of our analysis show that office buildings with a higher level of eco-friendly certification are priced significantly higher. Through LCC analysis, it was also found that buildings with high levels of eco-friendly certification cost less than those with lower-level certification. Furthermore, it was confirmed that office buildings with higher-level environmental certification have total lower environmental load costs (TCA = LCC+LCA) than buildings without certification. According to the TCA analysis, buildings with a high level eco-certification generated lower social costs than buildings with lower-level or no certification.

A Study on the Life Cycle Cost Analysis of the See-through a-si Building Integrated Photovoltaic System (투광형 비정질 BIPV 시스템의 LCC 평가에 관한 연구)

  • Lee, Han-Myoung;Oh, Min-Seok;Kim, Hway-Suh
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This study was carried out to evaluate the Life Cycle Cost(LCC) of three types of RTPV(Building Integrated Photovoltaic) systems-Glass plus Granite. Crystalline BIPV and See through Amorphous BIPV-which were vertically installed to generate the same power output(76 kW level). Initial investment costs. cost. savings and maintenance costs had been predicted during the period of analysing the LCC of three types of BIPV(Building Integrated Photovoltaic) systems installed for the purpose of evaluating the LCC. In case of cost savings, it had been analyzed by measuring the amount of electric power generated, reduction in lighting load and heat & cooling loads through simulation. From this analysis, it was predicted that the See-through amorphous BIPV offering cost saving advantages demonstrated the economical efficiency similar to the Class plus Granite when it is backed by more than 20 years of durability.

A Study on the Evaluation Method of Green Remodeling Considering LCA and LCC (LCA 및 LCC를 고려한 환경친화적 리모델링의 평가방법에 관한 연구)

  • Lee, Gwan-Ho;Kim, Nam-Gyu;Rhee, Eon-Ku
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.57-67
    • /
    • 2003
  • This study aims to presents Evaluation Method of Green Remodeling that analyze the value of environment through expense, using the method of life cycle cost and life cycle assessment simultaneously. The results of this study are summarized as follows. Evaluation Model developed in this study can convert economical value of environment into cost by integrating. In addition, the model can apply as a useful tool to estimation of economical design alternative as well as quantification of environmental loads and costs. Evaluation Model presented In this study observe energy consumption and the environmental load emission with qualification, it can forecast effect of environmental cost that cost estimation is expected to be added to energy cost rate by being possible. Synthetically, when Estimation Model and computer program that developed in this study is applies to the construction industry; reasonable management of environmental load is convenient at each step of Green Remodeling. In addition, at preliminary design phase, practical use may be possible by reasonable yardstick about various alternatives and improvement of design alternatives likewise by grasping environmental effect.

A Presentation of a Cost Classification System for Gas Plant Construction Projects

  • Park, Moonsun;Kim, Yongsu
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.625-626
    • /
    • 2015
  • The purpose of this study is to present a cost classification system that can be used in gas plant construction projects. Towards this end, it examined the detailed statements of the construction companies which had experience in carrying out plant construction projects. Based on the above, it also presented a life-cycle (i.e., EPCC) cost classification system for the gas plant construction projects by conducting the Delphi analysis through the expert opinions.

  • PDF

Life-Cycle Analysis of Nuclear Power Plant with Seismic Isolation System (면진장치 적용을 고려한 원전구조물 생애주기 분석)

  • Kim, Sunyong;Lee, Hong-Pyo;Cho, Myung-Sug
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.415-421
    • /
    • 2013
  • In order to extend the service life of a nuclear power plant(NPP) ensuring the structural safety, effective and efficient management of NPP considering structural deteriorations and various natural hazard risks has been treated as a significant tool(IAEA 1998). The systemic efforts is required to prevent the potential loss of NPPs resulting from the natural hazard including earthquakes, hurricane and flooding since the Fukushima accident. Earthquake risk of building structures can be mitigated through appropriate seismic isolation system installation. It has been known that a seismic isolation system can lead to reduction of the deleterious effect on ground motion induced by earthquakes, and structural safety can be improved. In this paper, the NPP life-cycle management is reviewed. Furthermore, effect of seismic isolation on the NPP life-cycle cost analysis with earthquake, and cost-benefit analysis in terms of life-cycle cost when applying the seismic isolation systems to NPP are introduced.

Reliability-Optimal Design Method of High-Speed Railway Bridges Based upon Expected Life-Cycle Cost (기대생애주기비용에 기초한 고속철도교량의 신뢰성-최적설계 방안)

  • Lee, Woo-Sang;Bang, Myung-Seok;Han, Sung-Ho;Lee, Chin-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.102-110
    • /
    • 2010
  • The reliability evaluation may be a efficient method for estimating of the quantitative structural safety considering the effect of uncertainties included in high-speed railway bridges. The expected life-cycle cost(LCC) based upon the reliability evaluation will reasonably offer the safety level and design criteria of high-speed railway bridges. Therefore, this study determined the expected life-cycle cost and optimal design method of high-speed railway bridges on the basis of the result of the numerical analysis and reliability evaluation. For this, after creating various design method based upon the standard design of high-speed railway bridges, the numerical analysis is conducted on each of the alternative design methods. The reliability evaluation by the design strength limit state function is conducted considering the effect of external uncertainties on the basis of the numerical analysis result. The expected life-cycle cost of high-speed railway bridges is calculated on the basis of the reliability evaluation result by each of the alternative design methods. Also, the optimal design method is determined using the calculated expected life-cycle cost. In addition, The result of reliability evaluation and expected life-cycle cost of optimal design method are examined considering the effect of internal uncertainties. It is expected that the result of this study can be used as a basic information for the systematic safety evaluation and optimal structure design of high-speed railway bridges.