• Title/Summary/Keyword: Life Assessment

Search Result 3,434, Processing Time 0.035 seconds

Study on Properties and Accelerated Life-time Test of Rubber O-ring by Temperature Stress

  • Shin, Young-Ju;Kang, Bong-Sung;Chung, Yu-Kyung;Choi, Kil-Yeong;Shin, Sei-Moon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2006.05a
    • /
    • pp.48-54
    • /
    • 2006
  • In this thesis, accelerated life test (ALT) method and procedure for rubber O-ring are applied to assure specified reliability of the products at guaranteeing the life of the products. Rubber O-ring is parts that keep intensity or make machine operation smoothly on attrition portion of machine and is used to prevent that oil is leaked. Usually. Rubber O-ring used NBR that is copolymer of acrylonitrile and butadiene. this are superior oil resistance, heat resistance, durability of abrasion, cold resistance, chemical resistance etc. The accelerated life test model for rubber O-ring are developed using the relationship between stresses and life characteristics of products. Using the accelerated life test method and the acceleration life test equipment which is developed, we performed life test, collected life data and analyzed the results of tests. The proposed accelerated life test method and procedure may be extended and applied to testing similar kinds of products to reduce test times and costs of the tests remarkably.

  • PDF

A Study on Fatigue Life Assessment Procedure for a Container Crane (컨테이너 크레인의 피로수명 평가 방법에 관한 연구)

  • 정동관;윤기봉
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.11-18
    • /
    • 1999
  • Proper fatigue life prediction procedures are needed for mechanical structures which requires high durability and reliability. In this paper, a fatigue life prediction procedure has been developed for predicting fatigue life of moving structure under variable loadings. The developed procedure was efficiently applied for a fatigue life calculation of a container crane. Especially, the procedure is useful for safety assessment by computer simulation. A computer program was developed for fatigue life assessment by adopting the forementioned procedure.

  • PDF

Performance-based remaining life assessment of reinforced concrete bridge girders

  • Anoop, M.B.;Rao, K. Balaji;Raghuprasad, B.K.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.69-97
    • /
    • 2016
  • Performance-based remaining life assessment of reinforced concrete bridge girders, subject to chloride-induced corrosion of reinforcement, is addressed in this paper. Towards this, a methodology that takes into consideration the human judgmental aspects in expert decision making regarding condition state assessment is proposed. The condition of the bridge girder is specified by the assignment of a condition state from a set of predefined condition states, considering both serviceability- and ultimate- limit states, and, the performance of the bridge girder is described using performability measure. A non-homogeneous Markov chain is used for modelling the stochastic evolution of condition state of the bridge girder with time. The thinking process of the expert in condition state assessment is modelled within a probabilistic framework using Brunswikian theory and probabilistic mental models. The remaining life is determined as the time over which the performance of the girder is above the required performance level. The usefulness of the methodology is illustrated through the remaining life assessment of a reinforced concrete T-beam bridge girder.

Technology Readiness Level Assignment to Industrial Plant System Life Cycle

  • Salim, Shelly;Jo, Raehyeok;Lee, Taekyeong;Lee, Joongyoon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.1-11
    • /
    • 2015
  • During the industrial plant system life cycle, required technologies are developed and assessed to analyze their performance, risks and costs. The assessment is called technology readiness assessment (TRA) and the measure of readiness is called technology readiness level (TRL). The TRL consists of 9 levels and through the TRL assessment, the technology to be developed and its components are assigned to their appropriate TRL. TRL assessment should be performed in each life cycle stages to monitor the technology readiness and analyze the potential risks and costs. However, even though the concept of TRL has been largely adopted by numerous organizations and industry, direct and clear assignment of target TRL for each life cycle stage has been overlooked. Direct mapping/assignment of target TRL for each life cycle has benefits as follow: (1) the technical risks condition of each life cycle stage can be better understood, (2) cost incurred if the technology development is failed can be analyzed in each life cycle stage, and (3) more effective decision making because the technology readiness achievement for each life cycle stages is agreed beforehand. In this paper, we propose a steel-making plant system life cycle and TRL assignment to each of the system life cycle stage. By directly assigning target TRL for each life cycle stages, we look forward to a more coordinated (in terms of exit criteria) and highly effective (in terms of technical risks identification and eventually prevent project failure) technology development and assessment processes.

Self-assessment and perspectives on 'The Journal of Medicine and Life Science' ('의생명과학' 현황 분석 및 제언)

  • Yoon, Sang-Pil
    • Journal of Medicine and Life Science
    • /
    • v.15 no.1
    • /
    • pp.31-35
    • /
    • 2018
  • 'The Journal of Medicine and Life Science' renewed editorial board and guidelines for authors, and opened online submission system (http://www.jops.co.kr/ojms/JMLS). Herein I, editor-in-chief of 'The Journal of Medicine and Life Science', did self-assessment on the history and current status of the journal and suggested perspectives on the journal.

A Study on the Life Assessment for Turbine Rotor by the In-field Electrochemical Method (터빈 수명평가를 위한 전기화학법의 현장적용에 관한 연구)

  • Chang, S.H.;Kim, J.H.;Song, G.W.;Yu, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.13-18
    • /
    • 2000
  • Nowadays, 60 percent of thermal power plants already have been operated over their own design life. These operations of old power plant over their design life have caused a fracture accident of degradation a loss of economic and human. Therefore, the new life assessment and prediction technology is necessary to improve the safety and reliability of high pressure and high temperature power plant facilities. In this paper, innovative electrochemical test method have been used and results have been compared to the conventional test. Finally, the electrochemical test is applied to the in-field HP turbine and a database is currently in progress for the development of the life assessment standard and procedure.

  • PDF

Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel

  • Kashkoli, Mosayeb Davoudi;Tahan, Khosro Naderan;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.701-715
    • /
    • 2019
  • Using first-order shear deformation theory (FSDT), a semi-analytical solution is employed to analyze creep damage and remaining life assessment of 304L austenitic stainless steel thick (304L ASS) cylindrical pressure vessels with variable thickness subjected to the temperature gradient and internal non-uniform pressure. Damages are obtained in thick cylinder using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The thermo-elastic creep response of the material is described by Norton's law. The novelty of the present work is that it seeks to investigate creep damage and life assessment of the vessels with variable thickness made of 304L ASS using LMP based on first-order shear deformation theory. A numerical solution using finite element method (FEM) is also presented and good agreement is found. It is shown that temperature gradient and non-uniform pressure have significant influences on the creep damages and remaining life of the vessel.

Application of Probabilistic Health Risk Analysis in Life Cycle Assessment -Part I : A General Framework for Uncertainty and Variability Analysis of Health Risk in Life Cycle Assessment (전과정평가에 있어 확률론적 건강영향분석기법 적용 -Part I : 전과정평가에 있어 확률론적 위해도 분석기법 적용방안에 관한 연구)

  • Choi, Kwang-Soo;Park, Jae-Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.185-202
    • /
    • 2000
  • Uncertainty and variability in Life Cycle Assessment(LCA) have been significant key issues in LCA methodology with techniques in other research area such as social and political science. Variability is understood as stemming from inherent variations in the real world, while uncertainty comes from inaccurate measurements, lack of data, model assumptions, etc. Related articles in this issues were reviewed for classification, distinguish and elaboration of probabilistic/stochastic health risk analysis application in LCA. Concept of focal zone, streamlining technique, scenario modelling and Monte Carlo/Latin Hypercube risk analysis were applied to the uncertainty/variability analysis of health risk in LCA. These results show that this general framework of multi-disciplinary methodology between probabilistic health risk assessment and LCA was of benefit to decision making process by suppling information about input/output data sensitivity, health effect priority and health risk distribution. There should be further research needs for case study using this methodology.

  • PDF

Environmental Impact Assessment of Wastewater Treatment Plant Using Life Cycle Assessment (LCA기법을 이용한 하수처리장의 환경영향 평가)

  • Park, Kwang-Ho;Hwang, Yong-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.809-818
    • /
    • 2005
  • Comprehensive environmental impact of wastewater treatment plant (WWTP) was evaluated with life cycle assessment (LCA) methodology based on ISO 14040. As environmental impact assessment method, Eco-indicator 95 and Eco-indicator 99 were used. The studied WWTP had a capacity of $100,000m^3/d$, and its life span of civil structure and main machinery was designed to 40 years and 20 years, respectively. As the results, more than 95% of environmental impact was produced by using electricity and chemical use in operation stage. In construction stage, temporary shoring facility was the major reason of environmental load, however, its impact was much less than those by operation utilities.

Reliability Assessment of Elevators Using Life Data of the Components (부품의 수명 데이터를 이용한 승강기의 신뢰성 평가)

  • Sohn, S.H.;Sohn, H.J.;Kim, S.J.;Yang, B.S.;Yoon, M.C.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.61-66
    • /
    • 2010
  • Engineering asset management (EAM) requires the accurate assessment of current and the prediction of future asset health condition. Suitable mathematical models that are capable of predicting time-to-failure and the probability of failure in future time are essential. In general reliability models, lifetime of component and system is estimated using failure time data. This paper deals with the reliability assessment of elevators using life of main components. Especially this work is concerned with the stochastic nature of life of elevator components. First, we investigate the Weibull statistical analysis of lifetime data for the components. The final goal is to establish the mathematical model for reliability assessment. This work provides more perspectives to future research in the fields of reliability and maintainability.