• 제목/요약/키워드: License-Plate Recognition

검색결과 217건 처리시간 0.027초

차량 규격과 특징 패턴을 이용한 자동차번호판 추출 (Extracting Of Car License Plate Using Motor Vehicle Regulation And Character Pattern Recognition)

  • 이종석;남기환;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.596-599
    • /
    • 2001
  • 자동차의 번호판을 인식하는 것은 차량을 식별하는데 있어서 매우 중요하다. 어두운 조명에서나 날씨가 나쁠 경우 차량의 형상이 왜곡 될 수 있고, 번호판을 식별하는데 어려움이 있다. 본 논문은 차량의 규격을 이용하여 효율적으로 번호판을 추출하는 방법을 제안한다. 이 방법에서 색상이나 형태처럼 차량의 규격을 따르는 자동차 번호판의 특징들은 번호판의 후보영역으로 결정되고, 신경망에 의해 숫자나 문자의 패턴 갖는 영역이 번호판 영역으로 인식된다. 또한 특징패턴인식의 결과로서 번호판을 확정하였다. 70개 차량영상을 실험해 본 결과 번호판 추출률에서는 84.29 %, 인식률에서는 80.81 %의 결과를 나타내었다.

  • PDF

DCT와 LVQ를 이용한 차량번호판 인식 시스템 (Vehicle License Plate Recognition System using DCT and LVQ)

  • 한수환
    • 지능정보연구
    • /
    • 제8권1호
    • /
    • pp.15-25
    • /
    • 2002
  • 본 논문에서는 차량 번호판에서 추출된 문자영역의 DCT(Digital Cosine Transform) 계수와 LVQ(Learning Vector quantization) 신경회로망을 이용하여 상대적으로 간결한 구조로 잡음의 영향을 적게 받는 차량 번호판 인식 시스템을 제안하였다. 입력된 차량영상의 RGB칼라정보를 이용하여 번호판 영역을 추출하고 추출된 번호판의 히스토그램과 문자의 상대적 위치정보를 병합하여 문자영역을 추출하였다. 이렇게 추출된 문자영역의 명암도 영상에 DCT를 적용하여 얻은 특징 벡터를 LVQ신경회로망의 입력으로 사용하여 인식 과정을 수행한다. 본 논문의 실험과정에서는 다양한 환경에서 촬영된 109대의 자가용 차량영상에 대하여 제안된 시스템을 실험하였으며 상대적으로 높은 번호판 영역 추출율과 인식률을 보였다.

  • PDF

형태학적 크기 분포 함수를 이용한 자동차 번호판 인식 (License Plate Recognition Using The Morphological Size Distribution Functions)

  • 차상혁;김주영;고광식
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.455-458
    • /
    • 2001
  • In this paper, a new license plate recognition method using the morphological size distribution functions and color images is proposed. The proposed method consists of two steps. The first step is license plate extraction process using the plate color and step edge information in the license plate. The second step is the extraction of character feature vectors using the morphological size distribution functions and character recognition process using the MLP(multilayer perceptron). By the use of morphological size distributions functions, the error that may occur during the character region extraction process is lessened and the recognition performances are improved by the decrease of feature vector dimension.

  • PDF

A Fast and Robust License Plate Detection Algorithm Based on Two-stage Cascade AdaBoost

  • Sarker, Md. Mostafa Kamal;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권10호
    • /
    • pp.3490-3507
    • /
    • 2014
  • License plate detection (LPD) is one of the most important aspects of an automatic license plate recognition system. Although there have been some successful license plate recognition (LPR) methods in past decades, it is still a challenging problem because of the diversity of plate formats and outdoor illumination conditions in image acquisition. Because the accurate detection of license plates under different conditions directly affects overall recognition system accuracy, different methods have been developed for LPD systems. In this paper, we propose a license plate detection method that is rapid and robust against variation, especially variations in illumination conditions. Taking the aspects of accuracy and speed into consideration, the proposed system consists of two stages. For each stage, Haar-like features are used to compute and select features from license plate images and a cascade classifier based on the concatenation of classifiers where each classifier is trained by an AdaBoost algorithm is used to classify parts of an image within a search window as either license plate or non-license plate. And it is followed by connected component analysis (CCA) for eliminating false positives. The two stages use different image preprocessing blocks: image preprocessing without adaptive thresholding for the first stage and image preprocessing with adaptive thresholding for the second stage. The method is faster and more accurate than most existing methods used in LPD. Experimental results demonstrate that the LPD rate is 98.38% and the average computational time is 54.64 ms.

Semi-Supervised Learning Based Anomaly Detection for License Plate OCR in Real Time Video

  • Kim, Bada;Heo, Junyoung
    • International journal of advanced smart convergence
    • /
    • 제9권1호
    • /
    • pp.113-120
    • /
    • 2020
  • Recently, the license plate OCR system has been commercialized in a variety of fields and preferred utilizing low-cost embedded systems using only cameras. This system has a high recognition rate of about 98% or more for the environments such as parking lots where non-vehicle is restricted; however, the environments where non-vehicle objects are not restricted, the recognition rate is about 50% to 70%. This low performance is due to the changes in the environment by non-vehicle objects in real-time situations that occur anomaly data which is similar to the license plates. In this paper, we implement the appropriate anomaly detection based on semi-supervised learning for the license plate OCR system in the real-time environment where the appearance of non-vehicle objects is not restricted. In the experiment, we compare systems which anomaly detection is not implemented in the preceding research with the proposed system in this paper. As a result, the systems which anomaly detection is not implemented had a recognition rate of 77%; however, the systems with the semi-supervised learning based on anomaly detection had 88% of recognition rate. Using the techniques of anomaly detection based on the semi-supervised learning was effective in detecting anomaly data and it was helpful to improve the recognition rate of real-time situations.

퍼지 ARTMAP에 의한 한글 차량 번호판 인식 시스템 설계 (Design of a Korean Character Vehicle License Plate Recognition System)

  • 웅성;최병재
    • 한국지능시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.262-266
    • /
    • 2010
  • Recognizing a license plate of a vehicle has widely been issued. In this thesis, firstly, mean shift algorithm is used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate. We then present an approach to recognize a vehicle's license plate using the Fuzzy ARTMAP neural network, a relatively new architecture of the neural network family. We show that the proposed system is well to recognize the license plate and shows some compute simulations.

다단계 신경 회로망을 이용한 블랙박스 영상용 차량 번호판 인식 알고리즘 (A License Plate Recognition Algorithm using Multi-Stage Neural Network for Automobile Black-Box Image)

  • 김진영;허서원;임종태
    • 한국정보통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.40-48
    • /
    • 2018
  • 본 논문은 차량과 함께 카메라의 위치가 이동하는 블랙박스 영상을 위한 차량 번호판 인식 알고리즘을 제안한다. 카메라의 흔들림이나 빛의 변화가 많은 블랙박스 영상에서 다단계 신경 회로망을 사용하여 한글 문자의 인식률을 높여 전체적인 차량 번호판의 인식률을 높이고자 한다. 제안한 알고리즘은 차량 번호판의 한글 문자의 모음과 자음을 분리하여 인식한다. 먼저, 1차 신경 회로망으로 모음을 인식하고, 종모음('ㅏ','ㅓ')과 횡모음('ㅗ','ㅜ')로 구분한 뒤 각각의 모음군에 2차 신경 신경회로망을 이용하여 자음을 구분한다. 실제 블랙박스 영상을 획득하여 차량 번호판 인식 시뮬레이션을 수행하였으며, 그 결과 제안한 인식 시스템이 기존의 신경 회로망 기법을 사용한 차량 번호판 인식 시스템보다 높은 인식률을 보임을 확인하였다.

Fast Super-Resolution GAN 기반 자동차 번호판 검출 및 인식 성능 고도화 기법 (Improved Method of License Plate Detection and Recognition Facilitated by Fast Super-Resolution GAN)

  • 민동욱;임현석;곽정환
    • 스마트미디어저널
    • /
    • 제9권4호
    • /
    • pp.134-143
    • /
    • 2020
  • 자동차 번호판 인식 기술은 도로의 교통상황 통제, 과속차량 단속, 도주 차량의 추적 등 현대 교통 시설 및 교통 안전망을 책임지고 있는 핵심 기술 중 하나이다. 이 기법은 과거에도 연구되었던 분야였으나 최근 딥러닝 기술의 발전으로 다양한 기법들을 적용하여 향상된 성능을 보이는 분야이며, 크게 자동차 번호판 검출과 번호판 인식으로 나뉜다. 본 연구에서는 다양한 객체 검출 모델과 WPOD-Net(Warped Planar Object Detection Network) 모델을 활용하여 자동차 번호판 검출 성능을 향상시키기 위한 실험을 진행하였으며, 객체 검출 모델을 활용하여 번호판을 검출하는 기존 방식들 대신 차량을 검출한 다음 번호판을 검출하는 방식을 택하여 정확도를 높였다. 특히 Super-Resolution 기법 중 하나인 Fast-SRGAN 모델을 활용하여 이미지 내에 존재하는 노이즈를 제거하는 처리를 통해 최종 성능을 향상시켰다. 결과적으로 92.38%에서 96.72%로 선행 연구 대비 평균 4.34% 향상된 성능이 실험을 통해 확인되었다.

왜곡 불변 차량 번호판 검출 및 인식 알고리즘 (Distortion Invariant Vehicle License Plate Extraction and Recognition Algorithm)

  • 김진호
    • 한국콘텐츠학회논문지
    • /
    • 제11권3호
    • /
    • pp.1-8
    • /
    • 2011
  • 최근 차량의 출입통제 및 주차관리 그리고 불법 차량의 단속 등 다양한 분야에서 차량 번호판 자동 인식 기술들이 활용되고 있다. 그러나 기울어지거나 햇빛 또는 조명 등의 영향을 받은 차량 영상에서는 번호판의 고유한 정보가 변형될 수 있다. 본 논문에서는 왜곡에 불변한 차량 번호판 검출 및 인식 알고리즘을 제안하였다. 먼저 DoG(Difference of Gaussian) 필터를 이용해서 번호판의 문자 획이 잘 보전된 이진영상을 생성하였다. 그리고 왜곡에 불변한 연속된 큰 숫자들의 위치를 찾고 그 정보를 이용해서 번호판영역을 검출하였다. 기하학적 왜곡 보정과 영상 개선 작업을 수행한 다음 신경망을 이용해서 번호판을 인식하였다. 제안한 알고리즘을 상용 LPR(License Plate Recognition) 시스템으로부터 획득한 6,200장의 차량 영상을 대상으로 시뮬레이션 한 결과 98.4%의 번호판 영상 인식률과 0.05초의 인식 속도를 얻을 수 있었다.

차 연산과 ART2 알고리즘을 이용한 차량 번호판 통합 인식 (Recognition of Car License Plates Using Difference Operator and ART2 Algorithm)

  • 김광백;김성훈;우영운
    • 한국정보통신학회논문지
    • /
    • 제13권11호
    • /
    • pp.2277-2282
    • /
    • 2009
  • 본 논문에서는 형태학적 특징 및 차 연산과 ART2 알고리즘을 이용한 차량 번호판 인식 방법을 제안하였다. 무인 카메라에서 획득된 차량 번호판 영상에서 차 연산을 이용하여 에지를 추출한 후에 블록 이진화한다. 이진화된 차량 영상에서 신 구 차량 번호판의 형태학적 특성을 8방향 윤곽선 추적 알고리즘에 적용하여 잡음 영역을 제거하고, 차량의 번호판 영역을 추출한다. 추출된 번호판 영역에 대하여 평균 이진화와 최대 최소 이진화를 적용하여 번호판의 개별 영역에 대한 형태학적 특성을 고려하여 잡음을 제거하고, Labeling 알고리즘을 적용하여 개별 문자를 추출한 후에 결합한다. 이렇게 추출되어 결합된 개별 문자 및 숫자 코드들은 ART2 알고리즘에 적용하여 학습 및 인식된다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 녹색 번호판과 흰색 번호판 이미지 각각 100장을 대상으로 실험한 결과, 제안된 차량 번호판 추출 및 인식기법이 효율적임을 확인하였다.