• Title/Summary/Keyword: License-Plate Recognition

Search Result 217, Processing Time 0.028 seconds

Vehicle Information Recognition and Electronic Toll Collection System with Detection of Vehicle feature Information in the Rear-Side of Vehicle (차량후면부 차량특징정보 검출을 통한 차량정보인식 및 자동과금시스템)

  • 이응주
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.1
    • /
    • pp.35-43
    • /
    • 2004
  • In this paper, we proposed a vehicle recognition and electronic toll collection system with detection and classification of vehicle identification mark and emblem as well as recognition of vehicle license plate to unman toll fee collection system or incoming/outcoming vehicles to an institution. In the proposed algorithm, we first process pre-processing step such as noise reduction and thinning from the rear side input image of vehicle and detect vehicle mark, emblem and license plate region using intensity variation informations, template masking and labeling operation. And then, we classify the detected vehicle features regions into vehicle mark and emblem as well as recognize characters and numbers of vehicle license plate using hybrid and seven segment pattern vector. To show the efficiency of the proposed algorithm, we tested it on real vehicle images of implemented vehicle recognition system in highway toll gate and found that the proposed method shows good feature detection/classification performance regardless of irregular environment conditions as well as noise, size, and location of vehicles. And also, the proposed algorithm may be utilized for catching criminal vehicles, unmanned toll collection system, and unmanned checking incoming/outcoming vehicles to an institution.

  • PDF

Recognition of a New Car License Plate Using HSI Information, Fuzzy Binarization and ART2 Algorithm (HSI 정보와 퍼지 이진화 및 ART2 알고리즘을 이용한 신차량 번호판의 인식)

  • Kim, Kwang-Baek;Woo, Young-Woon;Park, Choong-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.1004-1012
    • /
    • 2007
  • In this paper, we proposed a new car license plate recognition method using an unsupervised ART2 algorithm with HSI color model. The proposed method consists of two main modules; extracting plate area from a vehicle image and recognizing the characters in the plate after that. To extract plate area, hue(H) component of HSI color model is used, and the sub-area containing characters is acquired using modified fuzzy binarization method. Each character is further divided by a 4-directional edge tracking algorithm. To recognize the separated characters, noise-robust ART2 algorithm is employed. When the proposed algorithm is applied to recognize license plate characters, the extraction rate is better than that of existing RGB model and the overall recognition rate is about 97.4%.

Study on Vehicle License Plate Recognition System (차량 번호판 인식 시스템 구현에 관한 연구)

  • Kim, Hyun-Yul;Lee, Geon-Wha;Park, Young-Rok;Lee, Seung-Kyu;Park, Young-Cheol;Kang, Yong-Seok;Bae, Cheol-soo;Lee, Jin-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.2
    • /
    • pp.113-118
    • /
    • 2013
  • This study will suggest methods for a license plate recognition system that is suitable for license plate identification, separation of letters, and recognition of letters in order to recognize a licence plate efficiently. The suggested algorithm had tested a recognition system that onlyused backpropagation, a recognition system that used only SVM, and the suggested recognition system in order to prove efficiency. As a result, recognition rate had increased from the minimum 7.9% to the maximum12.2% as the case of using back propagation recognized the number platefor 87.9%, the case of using SVM for 91.4%, and the suggested had 98.6% of recognition rate.

Recognition of Chinese Automobile License Plates (중국 자동차 번호판 인식)

  • Ahn, Young-Joon;Wee, Kyu-Bum;Hong, Man-Pyo
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.81-88
    • /
    • 2007
  • We implement automobile license plates recognition system. These days automobile license plate recognition systems are widely used for tracing stolen cars. managing parking facilities, ticketing speeding cars, and so on. Recognition systems largely consist of three parts plates extraction, segments extraction, and segment recognition. For plates extraction, we measure the degree of inclination of plate. We use filters that extract only the horizontal components of the front of an automobile to measure the degree of inclination. For segment extraction, we trace the change of the number of blocks that consist solely of foreground pixels or background pixels as the horizontal scanning line moves along upward. For recognition of each individual letter or digit, we devise a variant of template matching method, called comparative template matching. Through experiments, we show that comparative template matching is less prone misled by noises and exhibits higher performance compared to the traditional method of template matching or histogram based recognition.

A Vehicular License Plate Recognition Framework For Skewed Images

  • Arafat, M.Y.;Khairuddin, A.S.M.;Paramesran, R.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5522-5540
    • /
    • 2018
  • Vehicular license plate (LP) recognition system has risen as a significant field of research recently because various explorations are currently being conducted by the researchers to cope with the challenges of LPs which include different illumination and angular situations. This research focused on restricted conditions such as using image of only one vehicle, stationary background, no angular adjustment of the skewed images. A real time vehicular LP recognition scheme is proposed for the skewed images for detection, segmentation and recognition of LP. In this research, a polar co-ordinate transformation procedure is implemented to adjust the skewed vehicular images. Besides that, window scanning procedure is utilized for the candidate localization that is based on the texture characteristics of the image. Then, connected component analysis (CCA) is implemented to the binary image for character segmentation where the pixels get connected in an eight-point neighbourhood process. Finally, optical character recognition is implemented for the recognition of the characters. For measuring the performance of this experiment, 300 skewed images of different illumination conditions with various tilt angles have been tested. The results show that proposed method able to achieve accuracy of 96.3% in localizing, 95.4% in segmenting and 94.2% in recognizing the LPs with an average localization time of 0.52s.

Vehicle-logo recognition based on the PCA

  • Zheng, Qi;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.429-431
    • /
    • 2012
  • Vehicle-logo recognition technology is very important in vehicle automatic recognition technique. The intended application is automatic recognition of vehicle type for secure access and traffic monitoring applications, a problem not hitherto considered at such a level of accuracy. Vehicle-logo recognition can improve Vehicle type recognition accuracy. So in this paper, introduces how to vehicle-logo recognition. First introduces the region of the license plate by algorithm and roughly located the region of car emblem based on the relationship of license plate and car emblem. Then located the car emblem with precision by the distance of Hausdorff. On the base, processing the region by morphologic, edge detection, analysis of connectivity and pick up the PCA character by lowing the dimension of the image and unifying the PCA character. At last the logo can be recognized using the algorithm of support vector machine. Experimental results show the effectiveness of the proposed method.

Malaysian Vehicle License Plate Recognition in Low Illumination Images (저 조도 영상에서의 말레이시아 차량 번호판 인식)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.19-26
    • /
    • 2013
  • In the Malaysian license plates, alphabets and numerals which are made by plastic, are adhered to a frame as embossing style and occasionally characters in horizontal, vertical directions are aligned with narrow space. So the extraction of character stroke information can be hard in the vehicle images of low illumination intensity. In this paper, Malaysian license plate recognition algorithm for low illumination intensity image is proposed. DoG filtering based character stroke generation method is introduced to derive exact connected components of strokes in the vehicle image of low illumination intensity. After localization of plate by connected component analysis, characters are segmented and recognized. Algorithm is experimented for the 6,046 vehicle images captured in Kuala Lumpur by IR camera without using any special light during day and night. The experimental results show that recognition accuracy of plates is 96.1%.

A Vehicle Speed Measurement System Implementation using a Stereo Camera and a License Plate Recognition Algorithm (스테레오 카메라와 번호판 인식 알고리즘을 활용한 차량 속도 측정 시스템 구현)

  • Kim, Young-Mo;Rheu, Jee-Hyung;Choi, Doo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.78-84
    • /
    • 2016
  • This paper presents and implements a vehicle speed measurement system using a license plate recognition system and a stereo camera. Using the feature points of the license plate recognition system, the disparity information is extracted and then the distance to the feature points is calculated by using the disparity information. In this paper, a vehicle speed is measured using the adjacent distances from consecutive stereo images and the corresponding time of the distances. Actual vehicle speed is also measured using the reference measurement equipment (tape switch based system) in order to test the accuracy of the proposed speed measurement system. The implemented stereo based speed measurement system shows appropriate result within specification both in the daytime and nighttime experiments.

Character Extraction of Car License Plates using RGB Color Information and Fuzzy Binarization (RGB 컬러 정보와 퍼지 이진화를 이용한 차량 번호판의 개별 문자 추출)

  • 김광백;김문환;노영욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.80-87
    • /
    • 2004
  • In this paper we proposed the novel feature extraction method that is able to extract the individual characters from the license plate area of the car image more precisely by using the RGB color information and the fuzzy binarization newly proposed. The proposed method, first, extracts from the original image the areas that the pixels with the colors around the green are concentrated on as the candidate areas of the license plate, and selects the area with the most intensive distribution of pixels with the white color among the candidate areas as the license plate area. Second the noises of the license plate area should be removed by using 34{\times}$3 Sobel masking, and the fuzzy binarization method are proposed and applied to the license plate area to generate the binarized image of the license plate area. Lastly, the application of the contour tracking algorithm to the binarized area extracts the individual characters from the license plate area. The experiment on a variety of the real car images showed that the proposed method generates the higher rate of success for character extraction than the previous methods.

Robust Scheme of Segmenting Characters of License Plate on Irregular Illumination Condition (불규칙 조명 환경에 강인한 번호판 문자 분리 기법)

  • Kim, Byoung-Hyun;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.61-71
    • /
    • 2009
  • Vehicle license plate is the only way to check the registrated information of a vehicle. Many works have been devoted to the vision system of recognizing the license plate, which has been widely used to control an illegal parking. However, it is difficult to correctly segment characters on the license plate since an illumination is affected by a weather change and a neighboring obstacles. This paper proposes a robust method of segmenting the character of the license plate on irregular illumination condition. The proposed method enhance the contrast of license plate images using the Chi-Square probability density function. For segmenting characters on the license plate, binary images with the high quality are gained by applying the adaptive threshold. Preprocessing and labeling algorithm are used to eliminate noises existing during the whole segmentation process. Finally, profiling method is applied to segment characters on license plate from binary images.