• Title/Summary/Keyword: LiPO

Search Result 265, Processing Time 0.031 seconds

A Study on the Leaching Effect and Selective Recovery of Lithium Element by Persulfate-based Oxidizing Agents from Waste LiFePO4 Cathode (과황산계 산화제에 따른 폐LiFePO4 양극재에서 리튬의 침출 효과와 선택적 회수에 대한 연구)

  • Kim, Hee-Seon;Kim, Dae-Weon;Jang, Dae-Hwan;Kim, Boram;Jin, Yun-Ho;Chae, Byung-Man;Lee, Sang-Woo
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.40-48
    • /
    • 2022
  • In waste lithium iron phosphate (LFP) batteries, the cathode material contains approximately 4% lithium. Recycling the constituent elements of batteries is important for resource circulation and for mitigating the environmental pollution. Li contained in the waste LFP cathode powder was selectively leached using persulfate-based oxidizing agents, such as sodium persulfate, potassium persulfate, and ammonium persulfate. Leaching efficiency and waste LFP powder properties were compared and analyzed. Pulp density was used as a variable during leaching, which was performed for 3 h under each condition. The leaching efficiency was calculated using the inductively coupled plasma (ICP) analysis of the leachate. All types of persulfate-based oxidizing agents used in this study showed a Li leaching efficiency over 92%. In particular, when leaching was performed using (NH4)2S2O8, the highest Li leaching percentage of 93.3% was observed, under the conditions of 50 g/L pulp density and an oxidizing agent concentration of 1.1 molar ratio.

Potentiometric CO2 gas sensor based on the thin film electrolyte of Li+ ion conductor (박막 리튬이온전도체를 이용한 전위차 CO2 가스센서)

  • Noh, Whyo-Sub;Choi, Gwang-Pyo;Song, Ho-Geun;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.258-264
    • /
    • 2005
  • Li+-ion conducting ($Li_{3}PO_{4}$) thin films with thickness of $0.3{\mu}m$, $0.65{\mu}$, $1.2{\mu}$ were deposited on $Al_{2}O_{3}$ substrate at room temperature by thermal evaporation. They were sintered at $700^{\circ}C$ and $800^{\circ}C$ for 2 hours, respectively. Reference electrode and sensing electrode were printed on Au-electrode by silk printing method. The EMF and the ${\Delta}EMF$/dec were increased with increasing the electrolyte thickness and sintering temperature. The sample sintered at $800^{\circ}C$ was shown a good response and recovery characteristics more than those sintered at $700^{\circ}C$. The Nernst's slop of 75 mV per decade was obtained at operating temperature of $500^{\circ}C$.

Preparation of LiFe PO4 Using Chitosan and its Cathodic Properties for Rechargeable Li-ion Batteries

  • Hong, Kyong-Soo;Yu, Seong-Mi;Ha, Myoung-Gyu;Ahn, Chang-Won;Hong, Tae-Eun;Jin, Jong-Sung;Kim, Hyun-Gyu;Jeong, Euh-Duck;Kim, Yang-Soo;Kim, Hae-Jin;Doh, Chil-Hoon;Yang, Ho-Soon;Jung, Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1719-1723
    • /
    • 2009
  • The LiFeP$O_4$ powder was synthesized by using the solid state reaction method with Fe($C_2O_4){\cdot}2H_2O,\;(NH_4)_2HPO_4,\;Li_2CO_3$, and chitosan as a carbon precursor material for a cathode of a lithium-ion battery. The chitosan added LiFePO4 powder was calcined at 350 ${^{\circ}C}$ for 5 hours and then 800 ${^{\circ}C}$ for 12 hours for the calcination. Then we calcined again at 800 ${^{\circ}C}$ for 12 hours. We characterized the synthesized compounds via the crystallinity, the valence states of iron ions, and their shapes using TGA, XRD, SEM, TEM, and XPS. We found that the synthesized powders were carbon-coated using TEM images and the iron ion is substituted from 3+ to 2+ through XPS measurements. We observed voltage characteristics and initial charge-discharge characteristics according to the C rate in LiFeP$O_4$ batteries. The obtained initial specific capacity of the chitosan added LiFeP$O_4$ powder is 110 mAh/g, which is much larger than that of LiFeP$O_4$ only powder.

Mössbauer Effect on LiFePO4 by Changing the Sintering Temperature and as Charged Cathode in Lithium Ion Battery (소결온도 변화와 충전된 리튬이온 전지 LiFePO4 정극에 대한 뫼스바우어 효과)

  • Kim, T.H.;Kim, H.S.;Im, H.S.;Yu, Y.B.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.65-70
    • /
    • 2007
  • In this paper, we composed the $LiFePO_4$ for the reversible use as the replacement material of the Li ion batteries and confirmed the good quality of the structure of the samples with the sintering temperature $675^{\circ}C,\;750^{\circ}C,\;and\;800^{\circ}C$ for 30 hours at nitrogen atmosphere. We also investigated the size of the particles through SEM picture and the change of the sintering temperature and the $Fe^{+3}$ content after charging the materials with 1 V, 160 mA and 3 V, 40 mA for 3 hours by Mossbauer spectroscopy. Also we can observe the increase on the $Fe^{+3}$ content at the charge condition and the increase of the amount ratio of the $Fe^{+3}$ ion only in sintering temperature $675^{\circ}C$ according to the increase of the electric charge. We cannot observe the change of the $Fe^{+3}$ ion in sintering temperature $800^{\circ}C$ after charging.

OCV Hysteresis Effect-based SOC Estimation in EKF Algorithm for a LiFePO4/C Cell (OCV 히스테리시스 특성을 이용한 확장 칼만 필터 기반 리튬 폴리머 배터리 SOC 추정)

  • Kim, J.H;Chun, C.Y.;Hur, I.N.;Cho, B.H.;Kim, B.J.
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.301-302
    • /
    • 2011
  • 본 논문에서는 리튬 폴리머 배터리($LiFePO_4/C$)의 개방전압(OCV;open-circuit voltage) 히스테리시스 특성을 이용한 확장 칼만 필터(EKF;extended Kalman filter) 기반 state-of-charge(SOC) 추정방법을 소개한다. 배터리 등가회로의 중요 요소인 OCV 모델링을 위해 충전 및 방전 각각의 OCV 히스테리시스 특성을 고려하였고 더불어 OCV-SOC 관계의 SOC 간격을 10%에서 5%로 조정하여 EKF 기반 SOC 추정알고리즘의 성능이 향상되었다. 축소된 하이브리드 자동차용 전류프로파일을 적용했을 때 SOC 추정이 잘 이루어지지 않는 영역은 EKF의 측정방정식에 노이즈 모델 및 데이터 리젝션(data rejection)을 구축하였다. 제안된 방법을 이용하여 SOC 추정결과 전류적산법 대비 5%이내의 SOC 추정에러를 만족하였다.

  • PDF

Accurate State of Charge Estimation of LiFePO4 Battery Based on the Unscented Kalman Filter and the Particle Filter (언센티드 칼만 필터와 파티클 필터에 기반한 리튬 인산철 배터리의 정확한 충전 상태 추정)

  • Nguyen, Thanh-Tung;Awan, Mudassir Ibrahim;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.126-127
    • /
    • 2017
  • An accurate State Of Charge (SOC) estimation of battery is the most important technique for Electric Vehicles (EVs) and Energy Storage Systems (ESSs). In this paper a new integrated Unscented Kalman Filter-Particle Filter (UKF-PF) is employed to estimate the SOC of a $LiFePO_4$ battery cell and a significant improvement is obtained as compared to the other methods. The parameters of the battery is modeled by the second order Auto Regressive eXogenous (ARX) model and estimated by using Recursive Least Square (RLS) method to calculate value of each element in the model. The proposed algorithm is established by combining a parameter identification technique using RLS method with ARX model and an SOC estimation technique using UKF-PF.

  • PDF