• 제목/요약/키워드: LiNi0.6Mn0.2Co0.2O2

검색결과 24건 처리시간 0.028초

KCl을 사용한 LiNi0.6Co0.2Mn0.2O2계 양극활물질의 잔류리튬 저감 및 전기화학특성 개선 (Improved Electrochemical Performance and Minimized Residual Li on LiNi0.6Co0.2Mn0.2O2 Active Material Using KCl)

  • 유기원;신미라;신태명;홍태환;김홍경
    • 전기화학회지
    • /
    • 제20권1호
    • /
    • pp.7-12
    • /
    • 2017
  • $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$의 전구체 물질에 KCl을 첨가함으로써, 리튬카보네이트($Li_2CO_3$)와 리튬수산화물(LiOH)의 양을 감소시켰을 때 전기화학특성에 어떤 영향을 주는지에 대한 연구를 진행하였다. KCl을 1 질량 %로 전구체에 첨가하여 $800^{\circ}C$에서 열처리 한 샘플의 경우, 첨가하지 않은 재료와 대비하여 잔류하는 리튬카보네이트($Li_2CO_3$)는 8,464 ppm에서 1,639 ppm으로 리튬수산화물(LiOH)은 8,088 ppm에서 6,287 ppm으로 크게 감소하였다. XRD 분석결과 KCl의 첨가는 모상구조에 영향을 주지 않았으며, 층상구조 결정성이 약간 개선되는 효과가 확인되었다. 또한, 전하전달 저항($R_{ct}$)은 $255{\Omega}$에서 KCl 첨가 시 $99{\Omega}$으로 감소하였다. 초기 방전 용량은 171.04 mAh/g에서 182.73 mAh/g으로 증가하였으며 싸이클 특성도 개선되었다. 특히, AFM 분석을 통하여 표면적이 50% 감소하는 것을 확인하였는데, 이는 잔류리튬의 산화반응으로 인한 열 때문일 것으로 해석되고, 전해질과의 부반응을 억제할 수 있는 장점이 있었다. 잔류리튬 제거를 위해 KCl을 첨가한 연구는, 아직까지 발표된 바가 없으며, $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$계 양극활물질의 전기화학특성을 개선하는데 매우 효과적임을 본 연구를 통해 확인할 수 있었다.

알루미늄이 첨가된 Li(Ni1/3Co1/3Mn1/3-xAlx)O2 양극활물질의 전기화학적 특성 (Electrochemical Properties of Al Doped Li(Ni1/3Co1/3Mn1/3-xAlx)O2, Cathode Materials)

  • 김선혜;심광보;김창삼
    • 전기화학회지
    • /
    • 제9권2호
    • /
    • pp.64-69
    • /
    • 2006
  • 초음파분무열분해법과 한 단계의 후열처리로 이차상이 없는 Al이 첨가된 $Li(Ni_{1/3}Co_{1/3}Mn_{1/3-x}Al_x)O_2$ (x=0.0, 0.005, 0.01. 0.05) 리튬이차전지용 양극활물질을 합성하였다. 합성된 분말은 Al의 첨가량이 많아짐에 따라서 $I_{003}/I_{104}$ 비는 감소하고 입자가 커지는 경향을 보였다. 상온에서 전류밀도 1C의 rate로 $3.0\sim4.5V$ 범위에서 충방전 시험한 결과, Al 치환량이 0.5와 1.0 at%에서는 초기용량이 180과 $184mAhg^{-1}$으로 치환하지 않았을 때의 $182mAhg^{-1}$과 차이가 없었으며, 싸이클 특성도 치환하지 않은 것과 0.5, 1.0 at% 치환한 조성에서 각각 81, 77, 81%의 방전용량이 유지되었다. 그러나 $3.0\sim4.6V$에서는 치환효과가 확실하게 나타나서, 50 싸이클 후의 치환하지 않은 것의 방전용량은 초기용량의 30%가지 감소한데 비하여 Al을 0.5 at% 치환한 것은 70%를 유지하였다. 치환에 의한 싸이클 특성 향상은 XPS 분석 결과 Al 치환이 $Mn^{3+}$의 양을 감소시켰기 때문인 것으로 사료되었다.

Recycling of end-of-life LiNixCoyMnzO2 batteries for rare metals recovery

  • Sattar, Rabia;Ilyas, Sadia;Kousar, Sidra;Khalid, Amaila;Sajid, Munazzah;Bukhari, Sania Iqbal
    • Environmental Engineering Research
    • /
    • 제25권1호
    • /
    • pp.88-95
    • /
    • 2020
  • An investigation of rare metals recovery from LiNixCoyMnzO2 cathode material of the end-of-life lithium-ion batteries is presented. To determine the influence of reductant on the leach process, the cathode material (containing Li 7.6%, Co 20.4%, Mn 19.4%, and Ni 19.3%) was leached in H2SO4 solutions either with or without H2O2. The optimal process parameters with respect to acid concentration, addition dosage of H2O2, temperature, and the leaching time were found to be 2.0 M H2SO4, 4 vol.% H2O2, 70℃, and 150 min, respectively. The yield of metal values in the leach liquor was > 99%. The leach liquor was subsequently treated by precipitation techniques to recover nickel as Ni(C4H7N2O2)2 and lithium as Li2CO3 with stoichiometric ratios of 2:1 and 1.2:1 of dimethylglyoxime:Ni and Na2CO3:Li, respectively. Cobalt was recovered by solvent extraction following a 3-stage process using Na-Cyanex 272 at pHeq ~5.0 with an organic-to-aqueous phase ratio (O/A) of 2/3. The loaded organic phase was stripped with 2.0 M H2SO4 at an O/A ratio of 8/1 to yield a solution of 114 g/L CoSO4; finally recovered CoSO4.xH2O by crystallization. The process economics were analyzed and found to be viable with a margin of $476 per ton of the cathode material.

The Coating Effects of Al2O3 on a Li[Li0.2Mn0.54Co0.13Ni0.13]O2 Surface Modified with (NH4)2SO4

  • Oh, Ji-Woo;Oh, Rye-Gyeong;Hong, Jung-Eui;Yang, Won-Geun;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1516-1522
    • /
    • 2014
  • A series of 20 wt % $(NH_4)_2SO_4$ and 3 wt % $Al_2O_3$ surface treatments were applied to $Li[Li_{0.2}Mn_{0.54}Co_{0.13}Ni_{0.13}]O_2$ substrates. The $Li[Li_{0.2}Mn_{0.54}Co_{0.13}Ni_{0.13}]O_2$ substrates were synthesized using a co-precipitation method. Sample (a) was left pristine and variations of the 20 wt % $(NH_4)_2SO_4$ and 3 wt % $Al_2O_3$ were applied to samples (b), (c) and (d). XRD was used to verify the space group of the samples as R$\bar{3}$m. Additional morphology and particle size data were obtained using SEM imagery. The $Al_2O_3$ coating layers of sample (b) and (d) were confirmed by TEM images and EDS mapping of the SEM images. 2032-type coin cells were fabricated in a glove box in order to investigate their electrochemical properties. The cells were charged and discharged at room temperature ($25^{\circ}C$) between 2.0V and 4.8V during the first cycle. The cells were then charged and discharged between 2.0V and 4.6V in subsequent cycles. Sample (d) exhibited lower irreversible capacity loss (ICL) in the first charge-discharge cycle as compared to sample (c). Sample (d) also had a higher discharge capacity of ~250 mAh/g during the first and second charge-discharge cycles when compared with sample (c). The rate capability of the $Al_2O_3$-coated sample (b) and (d) was lower when compared with sample (a) and (c). Sample (d), coated with $Al_2O_3$ after the surface treatment with $(NH_4)_2SO_4$, showed an improvement in cycle performance as well as an enhancement of discharge capacity. The thermal stability of sample (d) was higher than that of the sample (c) as the result of DSC.

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

LiNi0.6Co0.2Mn0.2O2 양극 활물질의 합성공정 중 나노크기 알루미나 추가에 의한 고온수명 개선 (Enhanced High-Temperature Performance of LiNi0.6Co0.2Mn0.2O2 Positive Electrode Materials by the Addition of nano-Al2O3 during the Synthetic Process)

  • 박지민;김다은;김해빈;배중호;이예지;명재인;황은경;임태은;송준호;유지상;류지헌
    • 전기화학회지
    • /
    • 제19권3호
    • /
    • pp.80-86
    • /
    • 2016
  • 리튬이온 이차전지의 고용량화를 위해 high-Ni계 양극 활물질이 크게 주목받고 있으나, Ni 함량이 높아짐에 따라 고온 안정성이 감소하여 수명저하가 발생하게 된다. 본 연구에서는 $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ (NCM622)의 합성공정 중에서 전구체인 전이금속 수산화물과 리튬염의 열처리 과정에 알루미나 입자를 첨가함으로써 추가적인 표면처리 공정없이 활물질 특성을 개선시키고자 하였다. 알루미나를 첨가하게 되면 고온 사이클 수명이 개선되었으며, 특히 나노크기의 알루미나를 사용하는 경우에 초기용량의 감소도 적고 수명도 개선됨을 확인하였다. 그리고, 나노 알루미나를 함량별로 추가한 결과로 표면형상이 점차 변화함과 동시에 격자상수의 감소가 발생하는 것이 관찰되어 표면코팅과 구조 내 치환이 동시에 발생하고 있음을 확인하였다. LSTA (linear-sweep thermmametry)를 사용하여 알루미나의 함량이 증가할 수록 부반응이 감소하며 고온 안정성이 증가하는 것을 확인하였다. 또한 전이금속 대비 Al을 2.5 mol% 추가하는 경우에 가장 우수한 고온 사이클 성능이 나타나는 것을 확인하였다.

흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석 (Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge)

  • 김봉진;윤건우;송인제;류지헌
    • 전기화학회지
    • /
    • 제26권1호
    • /
    • pp.11-18
    • /
    • 2023
  • 전기자동차 시장의 급속한 성장으로 이차전지의 사용이 급증함에 따라 사용 후 전지의 폐기 및 재활용이 심각한 문제로 제기되고 있다. 사용 후 리튬이온 전지를 처리하기 위해서는 저장된 에너지를 제거하기 위하여 효과적으로 방전하는 과정이 필수적이다. 본 연구에서는 흑연과 LiNi0.6Co0.2Mn0.2O2 (NCM622)을 사용하여 코인셀 형태로 반쪽전지 및 완전지를 제조하였고, 이를 과방전할 때 발생하는 전기화학적 거동에 대하여 분석하였다. 반쪽전지를 사용하여 양극과 음극을 각각 과방전시키면, 양극에서는 먼저 전이금속 산화물이 금속으로 환원되는 전환반응을 겪게 되며, 음극에서는 SEI 피막의 분해에 이어 집전체인 Cu가 용출되는 부반응이 발생하였다. 또한, 이러한 과방전의 발생 시에는 큰 분극을 필요로 하였다. 완전지의 과방전 시에는 각각의 부반응이 진행되는 시점에 존재하는 큰 분극들로 인하여 부반응의 본격적인 발생 전에 0 V에 도달하여 방전이 종료되었다. 그러나, 사이클을 통하여 용량이 퇴화된 완전지의 경우에는 과방전거동이 변화하여 음극에서 Cu 집전체의 부식이 발생됨을 확인하였다. 따라서, 사용 후 전지는 사용 전의 전지와는 과방전 시에 다른 거동을 지니고 있으므로 이러한 점들이 고려되어야 한다.

Effects of binary conductive additives on electrochemical performance of a sheet-type composite cathode with different weight ratios of LiNi0.6Co0.2Mn0.2O2 in all-solid-state lithium batteries

  • Ann, Jiu;Choi, Sunho;Do, Jiyae;Lim, Seungwoo;Shin, Dongwook
    • Journal of Ceramic Processing Research
    • /
    • 제19권5호
    • /
    • pp.413-418
    • /
    • 2018
  • All-solid-state lithium batteries (ASSBs) using inorganic sulfide-based solid electrolytes are considered prospective alternatives to existing liquid electrolyte-based batteries owing to benefits such as non-flammability. However, it is difficult to form a favorable solid-solid interface among electrode constituents because all the constituents are solid particles. It is important to form an effective electron conduction network in composite cathode while increasing utilization of active materials and not blocking the lithium ion path, resulting in excellent cell performance. In this study, a mixture of fibrous VGCF and spherical nano-sized Super P was used to improve rate performance by fabricating valid conduction paths in composite cathodes. Then, composite cathodes of ASSBs containing 70% and 80% active materials ($LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$) were prepared by a solution-based process to achieve uniform dispersion of the electrode components in the slurry. We investigated the influence of binary carbon additives in the cathode of all-solid-state batteries to improve rate performance by constructing an effective electron conduction network.

리튬이차전지용 리튬과잉계 양극 산화물의 충방전 과정 중 원자 구조 열화 과정과 전기화학 특성에 대한 분석 (Analysis for Atomic Structural Deterioration and Electrochemical Properties of Li-rich Cathode Materials for Lithium Ion Batteries)

  • 박서현;오필건
    • 공업화학
    • /
    • 제31권1호
    • /
    • pp.97-102
    • /
    • 2020
  • 최근 리튬이차전지 양극 소재의 다양한 열화 메커니즘들이 밝혀지면서 이것을 제어하여 새로운 전기화학적 특성을 구현하고 기존 소재의 한계점을 극복하고자 하는 연구결과들이 많이 보고되고 있다. 특히, 리튬과잉산화물은 250 mA h g-1 이상의 고 용량 차세대 리튬이차전지 양극 물질로 주목받고 있으나, 충방전 과정 중에 소재 특유의 원자 구조 열화로 인해 활용이 제한되고 있다. 본 연구는 0.4Li2MnO3_0.6LiNi1/3Co1/3Mn1/3O2 리튬과잉소재의 충방전 과정 중에서 겪는 원자 구조 변화 과정을 분석하여 소재의 열화 과정을 밝히고 이를 개선하기 위한 연구 방향을 제시하고자 한다. 이를 위해, 원자 단위의 분해능을 갖는 전자투과현미경을 활용하여 충방전 중 원자 구조의 변화 과정을 분석하고 이러한 구조 변화가 소재의 전기화학적 특성에 어떠한 영향을 미치는지 밝히고자 하였다. 충전 과정 중에 발생한 다량의 리튬 빈자리로 인해 구조 불안정성이 일어났고, 이로 인해 전이 금속이 리튬 빈 자리로 이동하면서 구조 열화가 확인되었다. 결과적으로 이러한 구조 변이는 리튬과잉소재의 가장 큰 문제점인 방전 전압 강하 특성을 야기한다는 것을 알아내었다.

복합고체 전해질을 적용한 리튬이차전지의 전기화학적 특성 (Electrochemical Performance of Rechargeable Lithium Battery Using Hybrid Solid Electrolyte)

  • 한종수;유학균;김재광
    • 전기화학회지
    • /
    • 제24권4호
    • /
    • pp.100-105
    • /
    • 2021
  • 최근 리튬이차전지의 안전성을 향상시킨 전고체 전지가 많은 관심의 대상이 되고 있으나 전도성 세라믹 또는 고체 고분자 전해질을 적용한 고체전지는 높은 계면 저항, 부반응 등과 같은 문제점을 지니고 있어 전기화학적 특성이 낮다. 기존 전고체 전지의 이러한 문제점을 해결하기 위하여 복합고체 전해질이 제안되었으며 본 연구에서는 나시콘 구조의 나노 입자 Li1.5Al0.5Ti1.5P3O12 (LATP) 전도성 세라믹, PVdF-HFP, 카보네이티 기반 액체전해질을 복합화 하여 유사고체 전해질을 제작하였다. 이 복합고체 전해질은 5.6 V의 높은 전압 안전성을 가지며 리튬이온의 탈리-착리 테스트에서 리튬 금속전극의 덴드라이트 성장 억제 효과가 있음을 보여준다. 또한 복합고체 전해질을 적용한 LiNi0.83Co0.11Mn0.06O2 (NCM811)기반 전지에서 4.8 V의 높은 충전 종지 전압에도 241.5 mAh/g의 높은 방전 용량을 나타내며 안정적인 전기화학 반응이 일어난다. NCM811 기반 전지의 90도 충전-방전 중에도 전지의 단락이나 폭발 없이 139.4 mAh/g 방전 용량을 보인다. 따라서 LATP기반 복합고체 전해질은 리튬이차전지의 안전성과 전기화학적 특성을 향상 시킬 수 있는 효과적인 방법임을 알 수 있다.