• Title/Summary/Keyword: LiMnO$_2$

Search Result 480, Processing Time 0.024 seconds

Characterization of Spinel Lithium Manganite Prepared by Citrate Sol-Gel Method

  • 홍영식;박휴범;이지은;한치환;김시중
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1153-1158
    • /
    • 1997
  • The powder characteristics of LiMn2O4 prepared by the citrate sol-gel method have been investigated. The optimum pH for the preparation of homogeneous citrate gel was calculated by the theoretical consideration of thermodynamic equilibrium constants for metal-citrate complexes and metal salts. The obtained citrate gel was prefired at 300 ℃ and calcined at 300-700 ℃ for 1 h. The obtained powders were characterized by TG/DSC, FT-IR spectrometer, X-ray diffractometer, SQUID magnetometer, SEM, and particle size analyzer. It was observed that the mixed phases of spinel LiMn2O4 and Mn3O4 were transformed into spinel LiMn2O4 phase and the vibrational bands due to the carbonate and nitrate were also disappeared over 400 ℃. At temperatures below 150 K, inverse molar susceptibilities of every sample began to show an antiferromagnetic ordering of Mn magnetic moments.

Fabrication of LiNiO2 using NiSO4 Recovered from NCM (Li[Ni,Co,Mn]O2) Secondary Battery Scraps and Its Electrochemical Properties (NCM(Li[Ni,Co,Mn]O2)계 폐 리튬이차전지로부터 NiSO4의 회수와 이를 이용한 LiNiO2 제조 및 전기화학적 특성)

  • Kwag, Yong-Gyu;Kim, Mi-So;Kim, Yoo-Young;Choi, Im-Sic;Park, Dong-Kyu;Ahn, In-Sup;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.286-293
    • /
    • 2014
  • The electrochemical properties of cells assembled with the $LiNiO_2$ (LNO) recycled from cathode materials of waste lithium secondary batteries ($Li[Ni,Co,Mn]O_2$), were evaluated in this study. The leaching, neutralization and solvent extraction process were applied to produce high-purity $NiSO_4$ solution from waste lithium secondary batteries. High-purity NiO powder was then fabricated by the heat-treatment and mixing of the $NiSO_4$ solution and $H_2C_2O_4$. Finally, $LiNiO_2$ as a cathode material for lithium ion secondary batteries was synthesized by heat treatment and mixing of the NiO and $Li_2CO_3$ powders. We assembled the cells using the $LiNiO_2$ powders and evaluated the electrochemical properties. Subsequently, we evaluated the recycling possibility of the cathode materials for waste lithium secondary battery using the processes applied in this work.

Characterization on the electrochemical and structural properties of polyanion cathode material Li2MnSiO4/C depending on the synthesis process (합성 방법에 따른 Li2MnSiO4/C 다중음이온 양극활물질의 구조 및 전기화학적 성질)

  • Lee, Young-Lim;Chung, Young-Min;Song, Min-Seob;Ju, Jeh-Beck;Cho, Won-Il
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.103-108
    • /
    • 2011
  • $Li_2MnSiO_4$/C was synthesized by solid state reaction and solution synthesis with sucrose for carbon source. The X-ray diffraction patterns of solid state reaction indicates small amount of impurities. By FE-SEM and HR-TEM, solution synthesis comprised several tens of nanometer comparing to 500~600 nm of $Li_2MnSiO_4$/C prepared by solid state reaction. The $Li_2MnSiO_4$/C prepared by solution synthesis show better electrochemical performance than solid state reaction. The first charge-discharge capacity are 236, 189 mAh/g respectively by solution synthesis. But its cycle performance was poor as yet and its capacity retention was 62% after 10 cycles.

Dielectric and Piezoelectric Characteristics of $0.95(K_{0.5}Na_{0.5})NbO_3$-0.05Li$(Sb_{0.8}Nb_{0.2})O_3$ Ceramics with the amount of $MnO_2$ addition ($MnO_2$ 첨가에 따른 $0.95(K_{0.5}Na_{0.5})NbO_3$-0.05Li$(Sb_{0.8}Nb_{0.2})O_3$ 세라믹스의 유전 및 압전특성)

  • Kim, Do-Hyung;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.172-173
    • /
    • 2008
  • In this study, $0.95(K_{0.5}Na_{0.5})NbO_3$-0.05Li$(Sb_{0.8}Nb_{0.2})O_3$ + $Ag_2O$ + x wt% $MnO_2$ were investigated as a function of the amount of $MnO_2$ addition in order to improve dielectric and piezoelectric properties of Lead-free piezoelectric ceramics. With increasing the amount of $MnO_2$ addition, density and electromechanical coupling factor $(k_p)$ increased up to 0.3wt.% $MnO_2$ and decreased above 0.3wt.% $MnO_2$. At the sintering temperature of 1020 $^{\circ}C$, Electromechanical coupling factor $(k_p)$, density, dielectric constant $({\varepsilon}r)$ and mechanical quality factor $(Q_m)$ of composition ceramics with 0.4wt% $Ag_2O$ addition showed the optimal value of 0.431, 4.33 g/$cm^3$, 820 and 119, respectively.

  • PDF

Electron Magnetic Resonance Study of Paramagnetic Impurities in LiTaO3 and LiMbO3 Single Crystals (LiTaO3 및 LiMbO3 단결정 내의 상자성 불순물에 관한 전자 자기공명 연구)

  • Yeom, Tae-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.5
    • /
    • pp.204-210
    • /
    • 2003
  • Electron magnetic resonance (EMR) of paramagnetic Cr$^{3+}$, Mn$^{2+}$, and Fe$^{3+}$ impurity ions in ferroelectric LiNbO$_3$ and LiTaO$_3$ single crystals has been studied. The actual sites location of paramagnetic impurity ions in the crystals was suggested from the experimental results and zero field splitting parameters calculated by superposition model. It turns out that Cr$^{3+}$ ions in LiNbO$_3$ crystal have two resonance centers and enter both the Li$^{+}$ and Nb$^{5+}$ ions. Mn$^{2+}$ and Fe$^{3+}$ impurity ions in LiNbO$_3$ substitute for Nb$^{5+}$ ions. However, both Cr$^{3+}$ and Fe$^{3+}$ ions in LiTaO$_3$ crystal reside at Li$^{+}$ ions.$ +/ ions.+/ ions.

Studies on Crystallographic and Mossbauer Spectra of the LiFe0.9Mn0.1PO4 (LiFe0.9Mn0.1PO4 물질의 결정구조 및 뫼스바우어 분광 연구)

  • Kwon, Woo-Jun;Lee, In-Kyu;Rhee, Chan-Hyuk;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.15-18
    • /
    • 2012
  • The olivine structured $LiFe_{0.9}Mn_{0.1}PO_4$ material was prepared by solid state method, and was analyzed by x-ray diffractometer (XRD), superconducting quantum interference devices (SQUID) and Mossbauer spectroscopy. The crystal structure of $LiFe_{0.9}Mn_{0.1}PO_4$ was determined to be orthorhombic (space group: Pnma) by Rietveld refinement method. The value of N$\acute{e}$el temperature ($T_N$) for $LiFe_{0.9}Mn_{0.1}PO_4$ was determined 50 K. The temperature dependence of the magnetization curves showed magnetic phase transition from paramagnetic to antiferromagnetic at $T_N$ by SQUID measurement. M$\ddot{o}$ssbauer spectra of $LiFe_{0.9}Mn_{0.1}PO_4$ showed 2 absorption lines at temperatures above $T_N$ and showed asymmetric 8 absorption lines at temperatures below $T_N$. These spectra occurred due to the magnetic dipole and electric quardrupole interaction caused by strong crystalline field at asymmetric $FeO_6$ octahedral sites.

Effects of Calcinations Temperature on the Electrochemical Properties of Li[Ni0.6Co0.2Mn0.2]O2 Lithium-ion Cathode Materials (리튬 이차전지용 양극활물질 Li[Ni0.6Co0.2Mn0.2]O2의 소성 온도가 전기화학적 특성에 미치는 영향)

  • Yoo, Gi-Won;Jeon, Hyo-Jin;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • Using $Na_2CO_3$ and $MeSO_4$ (Me = Ni, Co and Mn) as starting materials, the precursor of $[Ni_{0.6}Co_{0.2}Mn_{0.2}]CO_3$ has been synthesized by carbonate co-precipitation. The precursor was mixed with $Li_2CO_3$, and calcined at 750, 850, and$950^{\circ}C$ in air. Effect of calcinations temperature on characteristics of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ cathode materials was investigated. The structure and characteristics of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ were determined by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrochemical measurements. The X-ray diffraction (XRD) results show that the intensity ratio of $I_{(003)}/I_{(104)}$ increased and the R-factor ratio decreased with the increase of calcinations temperature. And Scanning electron microscopy (SEM) result show that the primary particle size increased. Especially, the $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ calcined at $950^{\circ}C$ for 24 H shows excellent electrochemical performances with reversible specific capacity of $165.3mAhg^{-1}$ [cut-off voltage 2.5~4.3 V, 0.1 C($17mAhg^{-1}$)] and good capacity retention of 95.4% after 50th charge/discharge cycles[cut-off voltage 2.5~4.3 V, 1 C($170mAhg^{-1}$)].

PH Effect of [Li,La]TiO3 Coating Solution on Electrochemical Property of Li[Ni0.35Co0.3Mn0.35]O2 Cathode ([Li,La]TiO3 코팅용액의 pH에 따른 Li[Ni0.35Co0.3Mn0.35]O2 양극의 전기화학적 특성)

  • Jung, Kwang-Hee;Kim, Seuk-Buom;Park, Yong-Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.77-82
    • /
    • 2011
  • The surface of $Li[Ni_{0.35}Co_{0.3}Mn_{0.35}]O_2$ cathode was modified by $[Li,La]TiO_3$ coating using pH controlled coating solution. At low pH values (acidic solution), cathode powders, which is oxides, have a positive surface charge, whereas, they have a negative surface charge at high pH values. As a result, their charge could affect the formation of the coating layer on the surface of cathode powder. To determine the optimal pH value, the surface coating of the pristine powder was carried out at various pH values of the coating solution. The surface morphology of coated samples was characterization by SEM and TEM analyses. Impedance analysis and cyclic voltammogram presented that internal resistance of the cell was dependent upon the pH of coating solution.