• Title/Summary/Keyword: LiDAR technology

Search Result 242, Processing Time 0.022 seconds

Dilution of Precision (DOP) Based Landmark Exclusion Method for Evaluating Integrity Risk of LiDAR-based Navigation Systems

  • Choi, Pil Hun;Lee, Jinsil;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • This paper introduces a new computational efficient Dilution of Precision (DOP)-based landmark exclusion method while ensuring the safety of the LiDAR-based navigation system that uses an innovation-based Nearest-Neighbor (NN) Data Association (DA) process. The NN DA process finds a correct landmark association hypothesis among all potential landmark permutations using Kalman filter innovation vectors. This makes the computational load increases exponentially as the number of landmarks increases. In this paper, we thus exclude landmarks by introducing DOP that quantifies the geometric distribution of landmarks as a way to minimize the loss of integrity performance that can occur by reducing landmarks. The number of landmarks to be excluded is set as the maximum number that can satisfy the integrity risk requirement. For the verification of the method, we developed a simulator that can analyze integrity risk according to the landmark number and its geometric distribution. Based on the simulation, we analyzed the relationship between DOP and integrity risk of the DA process by excluding each landmark. The results showed a tendency to minimize the loss of integrity performance when excluding landmarks with poor DOP. The developed method opens the possibility of assuring the safety risk of the Lidar-based navigation system in real-time applications by reducing a substantial amount of computational load.

Construction of a artificial levee line in river zones using LiDAR Data (라이다 자료를 이용한 하천지역 인공 제방선 추출)

  • Choung, Yun-Jae;Park, Hyeon-Cheol;Jo, Myung-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.185-185
    • /
    • 2011
  • Mapping of artificial levee lines, one of major tasks in river zone mapping, is critical to prevention of river flood, protection of environments and eco systems in river zones. Thus, mapping of artificial levee lines is essential for management and development of river zones. Coastal mapping including river zone mapping has been historically carried out using surveying technologies. Photogrammetry, one of the surveying technologies, is recently used technology for national river zone mapping in Korea. Airborne laser scanning has been used in most advanced countries for coastal mapping due to its ability to penetrate shallow water and its high vertical accuracy. Due to these advantages, use of LiDAR data in coastal mapping is efficient for monitoring and predicting significant topographic change in river zones. This paper introduces a method for construction of a 3D artificial levee line using a set of LiDAR points that uses normal vectors. Multiple steps are involved in this method. First, a 2.5-dimensional Delaunay triangle mesh is generated based on three nearest-neighbor points in the LiDAR data. Second, a median filtering is applied to minimize noise. Third, edge selection algorithms are applied to extract break edges from a Delaunay triangle mesh using two normal vectors. In this research, two methods for edge selection algorithms using hypothesis testing are used to extract break edges. Fourth, intersection edges which are extracted using both methods at the same range are selected as the intersection edge group. Fifth, among intersection edge group, some linear feature edges which are not suitable to compose a levee line are removed as much as possible considering vertical distance, slope and connectivity of an edge. Sixth, with all line segments which are suitable to constitute a levee line, one river levee line segment is connected to another river levee line segment with the end points of both river levee line segments located nearest horizontally and vertically to each other. After linkage of all the river levee line segments, the initial river levee line is generated. Since the initial river levee line consists of the LiDAR points, the pattern of the initial river levee line is being zigzag along the river levee. Thus, for the last step, a algorithm for smoothing the initial river levee line is applied to fit the initial river levee line into the reference line, and the final 3D river levee line is constructed. After the algorithm is completed, the proposed algorithm is applied to construct the 3D river levee line in Zng-San levee nearby Ham-Ahn Bo in Nak-Dong river. Statistical results show that the constructed river levee line generated using a proposed method has high accuracy in comparison to the ground truth. This paper shows that use of LiDAR data for construction of the 3D river levee line for river zone mapping is useful and efficient; and, as a result, it can be replaced with ground surveying method for construction of the 3D river levee line.

  • PDF

A Study on Extraction of Croplands Located nearby Coastal Areas Using High-Resolution Satellite Imagery and LiDAR Data (고해상도 위성영상과 LiDAR 자료를 활용한 해안지역에 인접한 농경지 추출에 관한 연구)

  • Choung, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.170-181
    • /
    • 2015
  • A research on extracting croplands located nearby coastal areas using the spatial information data sets is the important task for managing the agricultural products in coastal areas. This research aims to extract the various croplands(croplands on mountains and croplands on plain areas) located nearby coastal areas using the KOMPSAT-2 imagery, the high-resolution satellite imagery, and the airborne topographic LiDAR(Light Detection And Ranging) data acquired in coastal areas of Uljin, Korea. Firstly, the NDVI(Normalized Difference Vegetation Index) imagery is generated from the KOMPSAT-2 imagery, and the vegetation areas are extracted from the NDVI imagery by using the appropriate threshold. Then, the DSM(Digital Surface Model) and DEM(Digital Elevation Model) are generated from the LiDAR data by using interpolation method, and the CHM(Canopy Height Model) is generated using the differences of the pixel values of the DSM and DEM. Then the plain areas are extracted from the CHM by using the appropriate threshold. The low slope areas are also extracted from the slope map generated using the pixel values of the DEM. Finally, the areas of intersection of the vegetation areas, the plain areas and the low slope areas are extracted with the areas higher than the threshold and they are defined as the croplands located nearby coastal areas. The statistical results show that 85% of the croplands on plain areas and 15% of the croplands on mountains located nearby coastal areas are extracted by using the proposed methodology.

Study on Applicability of Cloth Simulation Filtering Algorithm for Segmentation of Ground Points from Drone LiDAR Point Clouds in Mountainous Areas (산악지형 드론 라이다 데이터 점군 분리를 위한 CSF 알고리즘 적용에 관한 연구)

  • Seul Koo ;Eon Taek Lim ;Yong Han Jung ;Jae Wook Suk ;Seong Sam Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.827-835
    • /
    • 2023
  • Drone light detection and ranging (LiDAR) is a state-of-the-art surveying technology that enables close investigation of the top of the mountain slope or the inaccessible slope, and is being used for field surveys in mountainous terrain. To build topographic information using Drone LiDAR, a preprocessing process is required to effectively separate ground and non-ground points from the acquired point cloud. Therefore, in this study, the point group data of the mountain topography was acquired using an aerial LiDAR mounted on a commercial drone, and the application and accuracy of the cloth simulation filtering algorithm, one of the ground separation techniques, was verified. As a result of applying the algorithm, the separation accuracy of the ground and the non-ground was 84.3%, and the kappa coefficient was 0.71, and drone LiDAR data could be effectively used for landslide field surveys in mountainous terrain.

Estimating the Stand Level Vegetation Structure Map Using Drone Optical Imageries and LiDAR Data based on an Artificial Neural Networks (ANNs) (인공신경망 기반 드론 광학영상 및 LiDAR 자료를 활용한 임분단위 식생층위구조 추정)

  • Cha, Sungeun;Jo, Hyun-Woo;Lim, Chul-Hee;Song, Cholho;Lee, Sle-Gee;Kim, Jiwon;Park, Chiyoung;Jeon, Seong-Woo;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.653-666
    • /
    • 2020
  • Understanding the vegetation structure is important to manage forest resources for sustainable forest development. With the recent development of technology, it is possible to apply new technologies such as drones and deep learning to forests and use it to estimate the vegetation structure. In this study, the vegetation structure of Gongju, Samchuk, and Seoguipo area was identified by fusion of drone-optical images and LiDAR data using Artificial Neural Networks(ANNs) with the accuracy of 92.62% (Kappa value: 0.59), 91.57% (Kappa value: 0.53), and 86.00% (Kappa value: 0.63), respectively. The vegetation structure analysis technology using deep learning is expected to increase the performance of the model as the amount of information in the optical and LiDAR increases. In the future, if the model is developed with a high-complexity that can reflect various characteristics of vegetation and sufficient sampling, it would be a material that can be used as a reference data to Korea's policies and regulations by constructing a country-level vegetation structure map.

Comparison of Terrain Changes in Debris Flow-Damaged Area and Morpho2DH Model Results (토석류 피해지의 지형 변화와 Morpho2DH 모형 결과의 비교 분석)

  • Jong-Seo Lee;Kwang-Youn Lee;Suk-Hee Yoon;Dong-Hyun Kim;Sang Ho Lee;Se-Wook Oh;Dong-Geun Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.3
    • /
    • pp.339-348
    • /
    • 2024
  • Debris flow is a typical type of mountainous sediment disaster that can cause widespread damage to both lives and property, making it essential to understand its behavioral characteristics for effective prevention. In this study, pre- and post-event Light Detection And Ranging(LiDAR) data from the Dosan-ri area in Bonghyeon-myeon, Yeongju-si, Gyeongsangbuk-do, Republic of Korea where debris flows occurred in 2023, were used to calculate the actual affected area and terrain change volume caused by the debris flow. These calculated values were then compared with those derived from the numeric simulation model, Morpho2DH, based on field surveys and laboratory investigation data. Additionally, the model's applicability was assessed by conducting cross-sectional elevation analyses based on the extent of the affected area and comparisons of the results. The findings indicate that the debris flow affected area and terrain change volume estimated by the Morpho2DH model were approximately 152% and 178% higher, respectively, compared to the LiDAR-based results. Pearson correlation analysis of the cross-sectional elevation changes showed a positive correlation, with Pearson Correlation Coefficients(PCC) of at least 0.65

Data Mining-Aided Automatic Landslide Detection Using Airborne Laser Scanning Data in Densely Forested Tropical Areas

  • Mezaal, Mustafa Ridha;Pradhan, Biswajeet
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.45-74
    • /
    • 2018
  • Landslide is a natural hazard that threats lives and properties in many areas around the world. Landslides are difficult to recognize, particularly in rainforest regions. Thus, an accurate, detailed, and updated inventory map is required for landslide susceptibility, hazard, and risk analyses. The inconsistency in the results obtained using different features selection techniques in the literature has highlighted the importance of evaluating these techniques. Thus, in this study, six techniques of features selection were evaluated. Very-high-resolution LiDAR point clouds and orthophotos were acquired simultaneously in a rainforest area of Cameron Highlands, Malaysia by airborne laser scanning (LiDAR). A fuzzy-based segmentation parameter (FbSP optimizer) was used to optimize the segmentation parameters. Training samples were evaluated using a stratified random sampling method and set to 70% training samples. Two machine-learning algorithms, namely, Support Vector Machine (SVM) and Random Forest (RF), were used to evaluate the performance of each features selection algorithm. The overall accuracies of the SVM and RF models revealed that three of the six algorithms exhibited higher ranks in landslide detection. Results indicated that the classification accuracies of the RF classifier were higher than the SVM classifier using either all features or only the optimal features. The proposed techniques performed well in detecting the landslides in a rainforest area of Malaysia, and these techniques can be easily extended to similar regions.

3D Object Detection with Low-Density 4D Imaging Radar PCD Data Clustering and Voxel Feature Extraction for Each Cluster (4D 이미징 레이더의 저밀도 PCD 데이터 군집화와 각 군집에 복셀 특징 추출 기법을 적용한 3D 객체 인식 기법)

  • Cha-Young, Oh;Soon-Jae, Gwon;Hyun-Jung, Jung;Gu-Min, Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.471-476
    • /
    • 2022
  • In this paper, we propose an object detection using a 4D imaging radar, which developed to solve the problems of weak cameras and LiDAR in bad weather. When data are measured and collected through a 4D imaging radar, the density of point cloud data is low compared to LiDAR data. A technique for clustering objects and extracting the features of objects through voxels in the cluster is proposed using the characteristics of wide distances between objects due to low density. Furthermore, we propose an object detection using the extracted features.

Classification of Urban Green Space Using Airborne LiDAR and RGB Ortho Imagery Based on Deep Learning (항공 LiDAR 및 RGB 정사 영상을 이용한 딥러닝 기반의 도시녹지 분류)

  • SON, Bokyung;LEE, Yeonsu;IM, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.3
    • /
    • pp.83-98
    • /
    • 2021
  • Urban green space is an important component for enhancing urban ecosystem health. Thus, identifying the spatial structure of urban green space is required to manage a healthy urban ecosystem. The Ministry of Environment has provided the level 3 land cover map(the highest (1m) spatial resolution map) with a total of 41 classes since 2010. However, specific urban green information such as street trees was identified just as grassland or even not classified them as a vegetated area in the map. Therefore, this study classified detailed urban green information(i.e., tree, shrub, and grass), not included in the existing level 3 land cover map, using two types of high-resolution(<1m) remote sensing data(i.e., airborne LiDAR and RGB ortho imagery) in Suwon, South Korea. U-Net, one of image segmentation deep learning approaches, was adopted to classify detailed urban green space. A total of three classification models(i.e., LRGB10, LRGB5, and RGB5) were proposed depending on the target number of classes and the types of input data. The average overall accuracies for test sites were 83.40% (LRGB10), 89.44%(LRGB5), and 74.76%(RGB5). Among three models, LRGB5, which uses both airborne LiDAR and RGB ortho imagery with 5 target classes(i.e., tree, shrub, grass, building, and the others), resulted in the best performance. The area ratio of total urban green space(based on trees, shrub, and grass information) for the entire Suwon was 45.61%(LRGB10), 43.47%(LRGB5), and 44.22%(RGB5). All models were able to provide additional 13.40% of urban tree information on average when compared to the existing level 3 land cover map. Moreover, these urban green classification results are expected to be utilized in various urban green studies or decision making processes, as it provides detailed information on urban green space.

Monitoring of non-point Pollutant Sources: Management Status and Load Change of Composting in a Rural Area based on UAV (UAV를 활용한 농촌지역 비점오염원 야적퇴비 관리상태 및 적재량 변화 모니터링)

  • PARK, Geon-Ung;PARK, Kyung-Hun;MOON, Byung-Hyun;SONG, Bong-Geun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • In rural areas, composting is a source of non-point pollutants. However, as the quantitative distribution and loading have not been estimated, it is difficult to determine the effect of composting on stream water quality. In this study, composting datum acquired by unmanned aerial vehicle(UAV) was verified by using terrestrial LiDAR, and the management status and load change of the composting was investigated by UAV with manual control flight, thereby obtaining the basic data to determine the effect on the water system. As a result of the comparative accuracy assessment based on terrestrial LiDAR, the difference in the digital surface model(DSM) was within 0.21m and the accuracy of the volume was 93.24%. We expect that the accuracy is sufficient to calculate and utilize the composting load acquired by UAV. Thus, the management status of composting can be investigated by UAV. As the total load change of composting were determined to be $1,172.16m^3$, $1,461.66m^3$, and $1,350.53m^3$, respectively, the load change of composting could be confirmed. We expect that the results of this study can contribute to efficient management of non-point source pollution by UAV.