• 제목/요약/키워드: LiDAR Sensor

Search Result 142, Processing Time 0.024 seconds

Development of a Real-Time 3D Object Detection System using a Deep Learning-based 2D Object Recognition Model and Low-Cost LiDAR Sensor (딥러닝 기반 2D 객체 인식 모델과 저비용 LiDAR 센서를 이용한 실시간 3D 객체 탐지 시스템 개발)

  • Aejin Lee;Yejin Hwang;Boin Jeong;Ki Yong Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.716-717
    • /
    • 2023
  • 최근 자율주행 기술이 큰 주목을 받고 있지만 고가의 센서를 필요로 하기 때문에 연구 및 상용화에 큰 어려움을 겪고 있다. 따라서 본 논문은 쉽게 사용 가능한 딥러닝 2D 객체 인식 모델과 범용 태블릿에 탑재된 저비용 LiDAR 센서를 이용하여 실시간 3D 객체 탐지가 가능한 시스템을 개발한다. 개발된 시스템을 실제 1/10 크기의 차량 모델에 적용하여 테스트해본 결과 개발 용이성과 정확도 측면에서 자율주행을 위한 저비용 센서로 충분히 활용될 가능성이 있음을 확인하였다.

Deep Learning Based Gray Image Generation from 3D LiDAR Reflection Intensity (딥러닝 기반 3차원 라이다의 반사율 세기 신호를 이용한 흑백 영상 생성 기법)

  • Kim, Hyun-Koo;Yoo, Kook-Yeol;Park, Ju H.;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper, we propose a method of generating a 2D gray image from LiDAR 3D reflection intensity. The proposed method uses the Fully Convolutional Network (FCN) to generate the gray image from 2D reflection intensity which is projected from LiDAR 3D intensity. Both encoder and decoder of FCN are configured with several convolution blocks in the symmetric fashion. Each convolution block consists of a convolution layer with $3{\times}3$ filter, batch normalization layer and activation function. The performance of the proposed method architecture is empirically evaluated by varying depths of convolution blocks. The well-known KITTI data set for various scenarios is used for training and performance evaluation. The simulation results show that the proposed method produces the improvements of 8.56 dB in peak signal-to-noise ratio and 0.33 in structural similarity index measure compared with conventional interpolation methods such as inverse distance weighted and nearest neighbor. The proposed method can be possibly used as an assistance tool in the night-time driving system for autonomous vehicles.

Semi-Supervised Domain Adaptation on LiDAR 3D Object Detection with Self-Training and Knowledge Distillation (자가학습과 지식증류 방법을 활용한 LiDAR 3차원 물체 탐지에서의 준지도 도메인 적응)

  • Jungwan Woo;Jaeyeul Kim;Sunghoon Im
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.346-351
    • /
    • 2023
  • With the release of numerous open driving datasets, the demand for domain adaptation in perception tasks has increased, particularly when transferring knowledge from rich datasets to novel domains. However, it is difficult to solve the change 1) in the sensor domain caused by heterogeneous LiDAR sensors and 2) in the environmental domain caused by different environmental factors. We overcome domain differences in the semi-supervised setting with 3-stage model parameter training. First, we pre-train the model with the source dataset with object scaling based on statistics of the object size. Then we fine-tine the partially frozen model weights with copy-and-paste augmentation. The 3D points in the box labels are copied from one scene and pasted to the other scenes. Finally, we use the knowledge distillation method to update the student network with a moving average from the teacher network along with a self-training method with pseudo labels. Test-Time Augmentation with varying z values is employed to predict the final results. Our method achieved 3rd place in ECCV 2022 workshop on the 3D Perception for Autonomous Driving challenge.

A Research on V2I-based Accident Prevention System for the Prevention of Unexpected Accident of Autonomous Vehicle (자율주행 차량의 돌발사고 방지를 위한 V2I 기반의 사고 방지체계 연구)

  • Han, SangYong;Kim, Myeong-jun;Kang, Dongwan;Baek, Sunwoo;Shin, Hee-seok;Kim, Jungha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.86-99
    • /
    • 2021
  • This research proposes the Accident Prevention System to prevent collision accident that can occur due to blind spots such as crossway or school zone using V2I communication. Vision sensor and LiDAR sensor located in the infrastructure of crossway somewhere like that recognize objects and warn vehicles at risk of accidents to prevent accidents in advance. Using deep learning-based YOLOv4 to recognize the object entering the intersection and using the Manhattan Distance value with LiDAR sensors to calculate the expected collision time and the weight of braking distance and secure safe distance. V2I communication used ROS (Robot Operating System) communication to prevent accidents in advance by conveying various information to the vehicle, including class, distance, and speed of entry objects, in addition to collision warning.

Development of small multi-copter system for indoor collision avoidance flight (실내 비행용 소형 충돌회피 멀티콥터 시스템 개발)

  • Moon, Jung-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2021
  • Recently, multi-copters equipped with various collision avoidance sensors have been introduced to improve flight stability. LiDAR is used to recognize a three-dimensional position. Multiple cameras and real-time SLAM technology are also used to calculate the relative position to obstacles. A three-dimensional depth sensor with a small process and camera is also used. In this study, a small collision-avoidance multi-copter system capable of in-door flight was developed as a platform for the development of collision avoidance software technology. The multi-copter system was equipped with LiDAR, 3D depth sensor, and small image processing board. Object recognition and collision avoidance functions based on the YOLO algorithm were verified through flight tests. This paper deals with recent trends in drone collision avoidance technology, system design/manufacturing process, and flight test results.

Scaling Attack Method for Misalignment Error of Camera-LiDAR Calibration Model (카메라-라이다 융합 모델의 오류 유발을 위한 스케일링 공격 방법)

  • Yi-ji Im;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1099-1110
    • /
    • 2023
  • The recognition system of autonomous driving and robot navigation performs vision work such as object recognition, tracking, and lane detection after multi-sensor fusion to improve performance. Currently, research on a deep learning model based on the fusion of a camera and a lidar sensor is being actively conducted. However, deep learning models are vulnerable to adversarial attacks through modulation of input data. Attacks on the existing multi-sensor-based autonomous driving recognition system are focused on inducing obstacle detection by lowering the confidence score of the object recognition model.However, there is a limitation that an attack is possible only in the target model. In the case of attacks on the sensor fusion stage, errors in vision work after fusion can be cascaded, and this risk needs to be considered. In addition, an attack on LIDAR's point cloud data, which is difficult to judge visually, makes it difficult to determine whether it is an attack. In this study, image scaling-based camera-lidar We propose an attack method that reduces the accuracy of LCCNet, a fusion model (camera-LiDAR calibration model). The proposed method is to perform a scaling attack on the point of the input lidar. As a result of conducting an attack performance experiment by size with a scaling algorithm, an average of more than 77% of fusion errors were caused.

Fabrication of LiDAR-detectable Plate-type Black Materials and Application in Hydrophilic Paints (라이다 센서에 인지되는 판상형 검은색 소재의 제조 및 친수성 도료로의 응용)

  • Jiwon Kim;Minki Sa;Chan-Gyo Kim;Ha-Yeong Kim;Yeon-Ryong Chu;Suk Jekal;Chang-Min Yoon
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.95-99
    • /
    • 2023
  • In this study, LiDAR-detectable black materials are synthesized by coating and reduction of titanium dioxide onto plate-type natural mica, which evaluated practical LiDAR verification. In detail, black TiO2@Mica materials are fabricated by utilizing a sol-gel reaction to coat titanium dioxide onto natural mica, followed by reduction using sodium tetrahydridoborate. Subsequently, Black TiO2@Mica materials are dispersed in hydrophilic transparent varnish and sprayed onto the glass substrate to assess applicability as paints. As a result, Black TiO2@Mica-based paints exhibit true blackness (L*=12.1) and a higher NIR reflectance (30.2 R%). In addition, it was confirmed that as-synthesized Black TiO2@Mica materials are successfully recognized by a LiDAR sensor. This phenomenon is attributed to Fresnel's reflection law, in which light reflection occurs at the interface between natural mica and titanium dioxide with different refractive indices. In this regard, the findings of the study are expected to contribute to the potential utilization of LiDAR-detectable materials in various fields such as autonomous vehicles, robotics, and drones.

Evaluation of Geospatial Information Construction Characteristics and Usability According to Type and Sensor of Unmanned Aerial Vehicle (무인항공기 종류 및 센서에 따른 공간정보 구축의 활용성 평가)

  • Chang, Si Hoon;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.555-562
    • /
    • 2021
  • Recently, in the field of geospatial information construction, unmanned aerial vehicles have been increasingly used because they enable rapid data acquisition and utilization. In this study, photogrammetry was performed using fixed-wing, rotary-wing, and VTOL (Vertical Take-Off and Landing) unmanned aerial vehicles, and geospatial information was constructed using two types of unmanned aerial vehicle LiDAR (Light Detection And Ranging) sensors. In addition, the accuracy was evaluated to present the utility of spatial information constructed through unmanned aerial photogrammetry and LiDAR. As a result of the accuracy evaluation, the orthographic image constructed through unmanned aerial photogrammetry showed accuracy within 2 cm. Considering that the GSD (Ground Sample Distance) of the constructed orthographic image is about 2 cm, the accuracy of the unmanned aerial photogrammetry results is judged to be within the GSD. The spatial information constructed through the unmanned aerial vehicle LiDAR showed accuracy within 6 cm in the height direction, and data on the ground was obtained in the vegetation area. DEM (Digital Elevation Model) using LiDAR data will be able to be used in various ways, such as construction work, urban planning, disaster prevention, and topographic analysis.

Synthesis of LiDAR-Detective Black Material via Recycling of Silicon Sludge Generated from Semiconductor Manufacturing Process and Its LiDAR Application (반도체 제조공정에서 발생하는 실리콘 슬러지를 재활용한 라이다 인지형 검은색 소재의 제조 및 응용)

  • Minki Sa;Jiwon Kim;Shin Hyuk Kim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.39-47
    • /
    • 2024
  • In this study, LiDAR-detective black material is synthesized by recycling silicon sludge (SS) that is generated from semiconductor manufacturing process, and its recognition is confirmed using two types of LiDAR sensors (MEMS and Rotating LiDAR). In detail, metal impurities on the surface of SS is removed, followed by coating of titanium dioxide (TiO2) and subsequent chemical reduction to obtain SS-derived black TiO2 (SS/bTiO2) material. As-prepared SS/bTiO2 is mixed with transparent paint to prepare hydrophilic black paints and applied to a glass substrate using a spray gun. SS/bTiO2-based paint shows similar blackness (L*=15.7) compared to commercial carbon black-based paint, and remarkable NIR reflectance (26.5R%, 905nm). Furthermore, MEMS and Rotating LiDAR have successfully detected the SS/bTiO2-based paint. This is attributed to the occurrence of high reflection of light at the interface between the black TiO2 and the silicon sludge according to the Fresnel's reflection principle. Hence, the new application field to effectively recycle silicon sludge generated in the semiconductor manufacturing process has been presented.

2D Indoor Map Building Scheme Using Ultrasonic Module (초음파 센서 모듈을 활용한 2D 실내 지도 작성 기법)

  • Ahn, Deock-hyeon;Kim, Nam-moon;Park, Ji-hye;Kim, Young-ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.986-994
    • /
    • 2016
  • In this paper, we proposed ultrasonic radar module and fixed module for the 2D indoor map building and from each of the modules, we can see the possibilities, limitations and considerations. And finally show the result of building actual 2D indoor map from the modules. Recently there are lots of works for the building indoor map by spotlight on the simultaneous localization and mapping (SLAM). And the LiDAR, ultrasonic, camera sensors are usually used for this work. Especially the LiDAR sensor have a higher resolution and wider detection range more than the ultrasonic sensor, but also there are limitation in the size of module, higher cost, much more throughput of processing data, and weaker to use in various indoor environment noises. So from these reasons, in this paper we could verify that proposed modules and schemes have a enough performance to build the 2D indoor map instead of using LiDAR and camera sensor with minimum number of ultrasonic sensors and less throughput of processing data.