• 제목/요약/키워드: LiDAR Point Cloud

검색결과 140건 처리시간 0.021초

Object Detection and Localization on Map using Multiple Camera and Lidar Point Cloud

  • Pansipansi, Leonardo John;Jang, Minseok;Lee, Yonsik
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.422-424
    • /
    • 2021
  • In this paper, it leads the approach of fusing multiple RGB cameras for visual objects recognition based on deep learning with convolution neural network and 3D Light Detection and Ranging (LiDAR) to observe the environment and match into a 3D world in estimating the distance and position in a form of point cloud map. The goal of perception in multiple cameras are to extract the crucial static and dynamic objects around the autonomous vehicle, especially the blind spot which assists the AV to navigate according to the goal. Numerous cameras with object detection might tend slow-going the computer process in real-time. The computer vision convolution neural network algorithm to use for eradicating this problem use must suitable also to the capacity of the hardware. The localization of classified detected objects comes from the bases of a 3D point cloud environment. But first, the LiDAR point cloud data undergo parsing, and the used algorithm is based on the 3D Euclidean clustering method which gives an accurate on localizing the objects. We evaluated the method using our dataset that comes from VLP-16 and multiple cameras and the results show the completion of the method and multi-sensor fusion strategy.

  • PDF

라이다 칩을 이용한 고해상도 위성영상의 자동좌표등록 (LiDAR Chip for Automated Geo-referencing of High-Resolution Satellite Imagery)

  • 이창노;오재홍
    • 한국측량학회지
    • /
    • 제32권4_1호
    • /
    • pp.319-326
    • /
    • 2014
  • 고해상도 위성영상을 성공적으로 활용하기 위해서는 지상기준점 등을 활용한 좌표등록 및 보정 과정이 필수적이다. 작업자의 수작업을 통한 기준점 획득의 경우 작업 시간이 오래 걸리므로, 자동화된 좌표 등록 방법에 대한 요구가 증대하고 있다. 보정하고자 하는 위성 영상을 정확한 좌표를 가진 참조 데이터에 영상 매칭을 수행하는 기법이 많이 소개 되었는데, 참조 데이터 중 라이다 데이터의 경우 공간 해상도 및 정확도가 높고 무엇보다 3차원 데이터이기 때문에 기복 변위 등을 내포하고 있지 않는 등의 장점을 보인다. 최근 라이다 데이터와 고해상도 위성영상간의 매칭을 위한 기법이 연구, 발표되었으나, 라이다 데이터의 특성상 대용량이기 때문에 처리에 많은 시간이 소요되는 등의 단점이 있었다. 따라서 본 논문에서는 일부의 공간만을 라이다 칩으로 추출 및 저장하여 위성영상의 좌표 등록에 활용하는 연구를 수행하였다. 이를 위해, 전체 라이다 포인트 데이터를 반사강도 정사영상 및 수치표고모델의 두 가지 형태로 변환하고 에지 추출을 통해 의미 있는 양의 에지 정보만을 포함하는 지역을 영상형태의 라이다 칩으로 추출, 저장하였으며, 용량이 현저히 줄어든 것을 확인할 수 있었다. 마지막으로 라이다 칩을 아리랑2호 및 아리랑3호 영상의 자동 좌표등록에 활용 해본 결과 평균 한 픽셀가량의 정확도 또한 확보할 수 있었다.

LiDAR 센서기반 근접물체 탐지계측 알고리즘 (Algorithm on Detection and Measurement for Proximity Object based on the LiDAR Sensor)

  • 정종택;최조천
    • 한국항행학회논문지
    • /
    • 제24권3호
    • /
    • pp.192-197
    • /
    • 2020
  • 최근 운송수단의 안전운행 및 사고방지를 목표로 하는 자율운행 관련 기술이 적극적으로 연구되고 있다. 현재 자율운행에서 장애물 탐지를 위하여 레이다 및 카메라 기술이 사용되고 있으나, 근접한 물체의 탐지 및 이격거리의 정밀계측에는 LiDAR (light detection and ranging) 센서를 사용하는 방법이 가장 적합하다. LiDAR 센서는 레이저 펄스빔을 발사하고 물체로부터 반사되어 온 반사빔과의 시간차를 취득하여 이것으로 정밀한 거리를 계산하는 측정기로, 광을 이용하기 때문에 대기환경에서 물체의 인식률이 감소할 수 있는 단점이 있다. 본 논문은 LiDAR 센서의 raw 데이타에 대한 신뢰성 향상과 이를 기반으로 실시간 주변물체에 대한 탐지 및 이격거리 계측에서 오차를 개선하기 위하여 삼각함수에 의한 포인트 cloud를 추출하고, 선형회귀 모델을 이용하여 계측알고리즘을 구현하였으며, Python 라이브러리를 활용하여 물체탐지의 오차범위를 개선할 수 있음을 검증하였다.

정제 모듈을 포함한 컨볼루셔널 뉴럴 네트워크 모델을 이용한 라이다 영상의 분할 (LiDAR Image Segmentation using Convolutional Neural Network Model with Refinement Modules)

  • 박병재;서범수;이세진
    • 로봇학회논문지
    • /
    • 제13권1호
    • /
    • pp.8-15
    • /
    • 2018
  • This paper proposes a convolutional neural network model for distinguishing areas occupied by obstacles from a LiDAR image converted from a 3D point cloud. The channels of a LiDAR image used as input consist of the distances to 3D points, the reflectivities of 3D points, and the heights of 3D points from the ground. The proposed model uses a LiDAR image as an input and outputs a result of a segmented LiDAR image. The proposed model adopts refinement modules with skip connections to segment a LiDAR image. The refinement modules with skip connections in the proposed model make it possible to construct a complex structure with a small number of parameters than a convolutional neural network model with a linear structure. Using the proposed model, it is possible to distinguish areas in a LiDAR image occupied by obstacles such as vehicles, pedestrians, and bicyclists. The proposed model can be applied to recognize surrounding obstacles and to search for safe paths.

드론 화상 및 LiDAR 스캐닝의 정합처리 자료를 활용한 노후 구조물 3차원 정밀 모델링에 관한 연구 (A Study on the 3D Precise Modeling of Old Structures Using Merged Point Cloud from Drone Images and LiDAR Scanning Data)

  • 신찬휘;민경조;김경규;전푸른;박훈;조상호
    • 화약ㆍ발파
    • /
    • 제40권4호
    • /
    • pp.15-26
    • /
    • 2022
  • 최근 건축물의 노령화에 따른 건물 전체 기능저하와 화재 및 지반침하와 같은 재난에 따른 건축물의 안정성 저하로 구조물 해체 수요가 급격히 증가하는 추세이다. 특히, 구조물 구성부위의 변형이나 손상의 정도가 심각한 구조물은 부재 내 집중하중이 발생하여 구조물 전체의 안정성이 저하되어 빠른 시일 내에 안전하게 구조물 해체가 가능한 시공기술에 대한 수요가 증가하고 있다. 또한, 노후 구조물에 대한 비인가 증축이나 불법 개조와 같은 구조적 변경으로 시공 당시 건물의 설계도면과 상이한 경우가 빈번하다고 보고되어오고 있다. 본 연구에서는 해체 대상 구조물의 시공 당시 도면과 현 시점 구조와의 차이점을 보완하기 위하여, 실내외 구조 표면에 대한 실측값을 활용하여 3차원 모델을 역설계하는 기법을 제안하였다. 실제 해체 시공 예정인 건축물을 대상으로 구조물 외곽에 대하여 드론 촬영을 실시하고 구조물 내부는 LiDAR 스캐닝을 수행하여 건물외곽과 실내에 대한 점군데이터를 획득한다. 각각 점군데이터는 Smartmapper를 활용하여 정밀하게 정합되며 2차원 도면제작과 3차원 구조해석용 모델 작성에 사용된다. 제안된 역설계 기법을 검증하기 위하여 드론화상자료, LiDAR 스캐너자료, 정합자료로부터 생성된 3차원 모델과 실측된 부재간의 거리를 비교하였다.

점군 데이터를 활용한 옹벽의 단면 수치 정보 자동화 도출 (Automated Derivation of Cross-sectional Numerical Information of Retaining Walls Using Point Cloud Data)

  • 한제희;장민서;한형서;조형준;신도형
    • 한국BIM학회 논문집
    • /
    • 제14권2호
    • /
    • pp.1-12
    • /
    • 2024
  • The paper proposes a methodology that combines the Random Sample Consensus (RANSAC) algorithm and the Point Cloud Encoder-Decoder Network (PCEDNet) algorithm to automatically extract the length of infrastructure elements from point cloud data acquired through 3D LiDAR scans of retaining walls. This methodology is expected to significantly improve time and cost efficiency compared to traditional manual measurement techniques, which are crucial for the data-driven analysis required in the precision-demanding construction sector. Additionally, the extracted positional and dimensional data can contribute to enhanced accuracy and reliability in Scan-to-BIM processes. The results of this study are anticipated to provide important insights that could accelerate the digital transformation of the construction industry. This paper provides empirical data on how the integration of digital technologies can enhance efficiency and accuracy in the construction industry, and offers directions for future research and application.

건축 MEP 역설계 지침을 위한 라이다 기반 포인트 클라우드 데이터 자료 구조 및 프로세스 기초 연구 (A Basic Study on Data Structure and Process of Point Cloud based on Terrestrial LiDAR for Guideline of Reverse Engineering of Architectural MEP)

  • 김지은;박상철;강태욱
    • 한국산학기술학회논문지
    • /
    • 제16권8호
    • /
    • pp.5695-5706
    • /
    • 2015
  • 최근 국내외 건설 분야에서 건축물 리노베이션 및 유지보수를 위한 BIM 적용이 활발해지는 추세이나, 상당수 기존 건축물이 현 상태를 반영하지 않은 2D 도면을 보유함에 따라 이를 바탕으로 한 BIM 모델 작성이 어려운 상황이다. 따라서 본 연구는 역설계 기술을 활용하고자, 건축 MEP 역설계 지침을 위한 포인트 클라우드 데이터 관련 데이터 구조 및 프로세스를 분석하고, 역설계 지침을 위한 고려사항을 도출하였다. 국내 시장에서 3차원 스캐닝 기술의 활발한 적용을 위해, 프로젝트 수행 초기 단계인 지상 라이다를 이용한 현장에 대한 데이터 취득, 취득 단계에서 얻은 포인트 클라우드 데이터의 기초 처리 및 프로세스 분석에 대해 연구 목적을 두고 있다.

건물 실내 공간 모델링을 위한 지상라이다 영상 정합 방법에 따른 정확도 분석 (The Analysis of Accuracy in According to the Registration Methods of Terrestrial LiDAR Data for Indoor Spatial Modeling)

  • 김형태;편무욱;박재선;강민수
    • 대한원격탐사학회지
    • /
    • 제24권4호
    • /
    • pp.333-340
    • /
    • 2008
  • 지상라이다에 의한 건물 실내 모델링을 구축하고 정확도를 분석하기 위해 제원이 다른 2개의 지상라이다를 실험지역에 적용하였다. 본 연구는 실내 공간 모델링을 위해 스캐닝 된 점군 단위에 대하여 3차원 정합 시 다량의 기준점 획득이 어려운 환경 하에서 (1) 점군 단위별 구조물 좌표계로 변환하여 처리한 경과와 (2) 점 군간 상호 정합 후 기준점에 의한 일괄 좌표변환 결과와의 편차를 비교하였다. 실험결과, 제원에 다르더라도 공통적으로 점군 정합 후 일괄처리 결과가 점군 단위별 변환 후 정합한 방법보다 오차의 크기, 분포가 적게 나타나고 있음을 확인하였다.

지상 LiDAR 자료의 절토량 산정 실험 (Experiment of Computation of Ground Cutting Volume Using Terrestrial LiDAR Data)

  • 김종화;편무욱;김상국;황연수;강남기
    • 대한공간정보학회지
    • /
    • 제17권2호
    • /
    • pp.11-17
    • /
    • 2009
  • 지상라이다는 대용량 3차원 지형좌표의 획득이 가능하여 이를 활용한 터널계측, 시설물 변위 측정 등 각종 토목공사에서의 적용이 시도되고 있다. 본 실험에서는 토목 공사 공정 중 많은 시간과 자본은 필요로 하는 토공 과정 중 지상 라이다를 이용하여 절토량을 구하는 방법에 대해서 다루었다. 실험방법은 절토지역에 대하여 지상라이다 측량을 실시하고, 현황도, 계획평면도의 3D Cad 데이터와 획득한 라이다 자료를 비교하여 절토현황을 계산하였다. 사용된 라이다가 보유한 해상도별 절토량 계산 값들을 실험을 통해 비교하였다.

  • PDF

2차원 라이다 센서 데이터 분류를 이용한 적응형 장애물 회피 알고리즘 (Adaptive Obstacle Avoidance Algorithm using Classification of 2D LiDAR Data)

  • 이나라;권순환;유혜정
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.348-353
    • /
    • 2020
  • This paper presents an adaptive method to avoid obstacles in various environmental settings, using a two-dimensional (2D) LiDAR sensor for mobile robots. While the conventional reaction based smooth nearness diagram (SND) algorithms use a fixed safety distance criterion, the proposed algorithm autonomously changes the safety criterion considering the obstacle density around a robot. The fixed safety criterion for the whole SND obstacle avoidance process can induce inefficient motion controls in terms of the travel distance and action smoothness. We applied a multinomial logistic regression algorithm, softmax regression, to classify 2D LiDAR point clouds into seven obstacle structure classes. The trained model was used to recognize a current obstacle density situation using newly obtained 2D LiDAR data. Through the classification, the robot adaptively modifies the safety distance criterion according to the change in its environment. We experimentally verified that the motion controls generated by the proposed adaptive algorithm were smoother and more efficient compared to those of the conventional SND algorithms.