• Title/Summary/Keyword: LiCl-KCl eutectic waste salt

Search Result 30, Processing Time 0.022 seconds

Necessity of Waste Salt Regeneration in Pyroprocessing (I) - In View of Waste Reduction - (건식처리에서 염폐기물 재생공정 필요성 (I) - 폐기물 감량 측면 -)

  • 김정국;김인태;박근일;권상운;유재형;김준형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.180-185
    • /
    • 2003
  • The reductions in final waste form and material costs, which were induced from an introduction of salt waste regeneration system, have been estimated and compared with those of the present pyrochemical process, which is under development in KAERI. The results calculated on the basis of published data and proper assumption showed that the final waste form of LiCl waste from the Advanced Conditioning Process would be reduced about 3.7 to#ton HM (from 5.4 to 1.7 ton/ton HM). For the case of LiCl-KCl eutectic salt waste from the electro-refining process, the final waste form would be reduced 2.3 ton/ton U. Thus, these estimation suggested that the introduction of salt waste regeneration system was essential to improve the economical efficiency of the pyrochemical process.

  • PDF

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.

EUTECTIC(LiCl-KCl) WASTE SALT TREATMENT BY SEQUENCIAL SEPARATION PROCESS

  • Cho, Yung-Zun;Lee, Tae-Kyo;Choi, Jung-Hun;Eun, Hee-Chul;Park, Hwan-Seo;Park, Geun-Il
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.675-682
    • /
    • 2013
  • The sequential separation process, composed of an oxygen sparging process for separating lanthanides and a zone freezing process for separating Group I and II fission products, was evaluated and tested with a surrogate eutectic waste salt generated from pyroprocessing of used metal nuclear fuel. During the oxygen sparging process, the used lanthanide chlorides (Y, Ce, Pr and Nd) were converted into their sat-insoluble precipitates, over 99.5% at $800^{\circ}C$; however, Group I (Cs) and II (Sr) chlorides were not converted but remained within the eutectic salt bed. In the next process, zone freezing, both precipitation of lanthanide precipitates and concentration of Group I/II elements were preformed. The separation efficiency of Cs and Sr increased with a decrease in the crucible moving speed, and there was little effect of crucible moving speed on the separation efficiency of Cs and Sr in the range of a 3.7 - 4.8 mm/hr. When assuming a 60% eutectic salt reuse rate, over 90% separation efficiency of Cs and Sr is possible, but when increasing the eutectic salt reuse rate to 80%, a separation efficiency of about 82 - 86 % for Cs and Sr was estimated.

Distribution of Zirconium Between Salt And Bismuth During A Separation From Rare Earth Elements By A Reductive Extraction

  • S. W. Kwon;Lee, B. J.;B. G. Ahn;Kim, E. H.;J. H. Yoo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.165-169
    • /
    • 2004
  • It was studied on the reductive extraction between the eutectic salt and Bi metal phases. The solutes were zirconium and the rare earth elements, where zirconium was used as the surrogate for the transuranic(TRU) elements. All the experiments were performed in a glove box filled with argon gas. Two types of experimental conditions were used -high and low initial solute concentrations in salt. Li-Bi alloy was used as a reducing agent to reduce the high chemical activity of Li. The reductive extraction characteristics were examined using ICP, XRD and EPMA analysis. Zirconium was successfully separated from the rare earth elements by the reductive extraction method. The LiF-NaF-KF system was favorable among the fluoride salt systems, whereas the LiCl-KCl system was favorable among the chloride salt systems. When the solute concentrations were high, intermetallic compounds were found near the salt-metal interface.

  • PDF

Characteristic of Oxidation Reaction of Lanthanide Chlorides in Oxygen-Eutectic Salt Bubble Column (산소-공융염 기포탑에서 희토류염화물의 산화반응 특성)

  • Cho, Yung-Zun;Yang, Hee-Chul;Lee, Han-Soo;Kim, In-Tae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.465-469
    • /
    • 2009
  • Characteristics of oxidation reaction of four lanthanide chlorides(Ce, Nd, Pr and $EuCl_3$) in a oxygen-eutectic(LiCl-KCl) salt bubble column was investigated. From the results obtained from the thermochemical calculations by HSC chemistry software, the most stable lanthanide compounds in the oxygen-used rare earth chlorides system were oxychlorides(EuOCl, NdOCl, PrOCl) and oxides($CeO_2$, $PrO_2$), which coincide well with results of the Gibbs free energy of the reaction. In this study, similar to the thermochemical results, regardless of the sparging time and molten salt temperature, oxychlorides for Eu, Nd and Pr and oxides for Ce and Pr were formed as a precipitant by a reaction with oxygen. The structure of the rare earth precipitates was divided into two shapes : small cubic(oxide) and large tetragonal (oxychloride) structures. The conversion efficiencies of the lanthanide elements to their molten salt-insoluble precipitates(or compound) were increased with the sparging time and temperature, and Ce showed the best reactivity. In the conditions of $650^{\circ}C$ of the molten salt temperature and 420 min of the sparging time, the conversion efficiencies were over 99% for all the investigated lanthanide chlorides.

Numerical Heat Transfer Analysis of die Electrowinning Cell in the Pyroprocessing (파이로프로세스 전해제련장치의 열전달 해석)

  • Yoon, Dal-Seong;Paek, Seung-Woo;Kim, Si-Hyung;Kim, Kwang-Rag;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.213-218
    • /
    • 2009
  • Electrowinning process recovers uranium with actinide elements from spent fuels and is a key step in the Pyroprocessing because of proliferation resistance. An analysis of heat transfer of the Electrowinning cell was conducted to develop basic tool for designing engineering-scale Electrowinner. For the calculation of the heat transfer, ANSYS CFX commercial code was adapted. As a result of the calculation, the vertical Heating Zone length had great effect upon temperature of LiCl-KCl eutectic salt. To maintain constant temperature in the salt, the Heating Zone length should be three times longer than the height of the salt. However, the argon and salt temperatures were barely affected by the Cooling Zone length. The temperature under the Cell cover was mainly influenced by the number of the cooling plates. When the cooling plates were installed more than the number of 5, temperature under the cover was maintained below $250^{\circ}C$. These temperature properties had similar tendency toward the temperature of the Cell which was measured from experiments, Simulated heat transfer information from this study could be used to design engineering-scale Electrowinner.

  • PDF

Feasibility Study on Aluminum Under Laser Ablation for Corrosion Resistance in Molten Salt

  • Peggy T. Milota;Supathorn Phongikaroon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.1
    • /
    • pp.67-80
    • /
    • 2024
  • Fundamental aspects of creating passivation layers for corrosion resistance in nuclear engineering applications, specifically the ability to form complete layers versus porous ones, are being explored in this study. Utilizing a laser ablation technique, 1,064 nm fire at 10 Hz with 60 pulses per shot and 0.5 mm between impact points, aluminum samples are treated in an attempt to create a fully formed passivation layer that will be tested in a LiCl-KCl eutectic salt. By placing these samples into an electrochemical environment mimicking a pyroprocessing system, corrosion rates, resistances and material characteristics are tested for one week and then compared between treated and untreated samples. In initial testing, linear sweep voltammetry indicates corrosion current density for the untreated sample at -0.038 mA·cm-2 and treated samples at -0.024 mA·cm-2 and -0.016 mA·cm-2, respectively. This correlates to a control sample corrosion rate of -0.205 mm·yr-1 and treated rates of -0.130 mm·yr-1 and -0.086 mm·yr-1 for samples 1 and 2. In addition, electrochemical impedance spectroscopy circuits show application of a longer-lasting porous passivation layer on the treated metal, compared to the naturally forming layer. However, the current technique fails to create a uniform protection layer across the sample.

Electrorefining Characteristics of Uranium by Using a Graphite Cathode (흑연 전극을 이용한 우라늄 전해정련 특성)

  • Kang, Young-Ho;Lee, Jong-Hyeon;Hwang, Sung-Chan;Shim, Joon-Bo;Kim, Eung-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Electrorefining experiments were successfully carried out in LiCl-KCl eutectic molten salt with a graphite cathode. It was found that the formation of Uranium-Graphite intercalation compound(U-GIC) helped the self-scraping mechanism of the uranium dendrite and the efficiency of the electrorefiner increased due to an elimination of the stripping step. The contaminations of the uranium deposit by rare earth elements was negligible while about 300 ppm of carbon was observed. The carbon contamination is believed to be eliminated by further purification by yttrium reaction. The morphology characteristics of the recovered U deposit was compared to that of steel cathode. These are only qualitative preliminary experimental results, but we believe that further research on this type of activity change the direction of the electrorefining research on spent nuclear fuel.

  • PDF

Application of AC superimposed DC waveforms to bismuth electrorefining

  • Greg Chipman;Bryant Johnson;Devin Rappleye
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1339-1346
    • /
    • 2024
  • Electrorefining in molten salts is used for purifying actinides. Optimizing electrorefining is key to minimizing processing time and radiological waste. One possible way of improving electrorefining efficiency is using an AC superimposed DC waveform. This waveform has demonstrated potential benefits in aqueous solutions but has never been utilized in a molten metal, molten salt application. This work investigates the effects of using an AC superimposed DC waveform on molten bismuth electrorefining in a molten LiCl-KCl-CaCl2 eutectic. Bismuth has been identified as a potential surrogate for plutonium electrorefining and a potential cathode in electrorefining used nuclear fuel (UNF). All electrorefining runs resulted in a high purity cathode ring and high yield with exception of the run using a low-frequency, high-amplitude superimposed AC waveform, which experienced some contamination and a lower yield. The other three AC superimposed DC runs experienced an average yield 6.7 % higher than the average yield of the DC runs. The electrorefining run using the high-frequency, high-amplitude superimposed AC signal had the highest yield. It is recommended in future studies to investigate the statistical variability of electrorefining yield and current efficiency and the impact of AC superimposed DC waveforms on solidified bismuth anodes.

Modeling of High-throughput Uranium Electrorefiner and Validation for Different Electrode Configuration (고효율 우라늄 전해정련장치 모델링 및 전극 구성에 대한 검증)

  • Kim, Young Min;Kim, Dae Young;Yoo, Bung Uk;Jang, Jun Hyuk;Lee, Sung Jai;Park, Sung Bin;Lee, Han soo;Lee, Jong Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.321-332
    • /
    • 2017
  • In order to build a general model of a high-throughput uranium electrorefining process according to the electrode configuration, numerical analysis was conducted using the COMSOL Multiphysics V5.3 electrodeposition module with Ordinary Differential Equation (ODE) interfaces. The generated model was validated by comparing a current density-potential curve according to the distance between the anode and cathode and the electrode array, using a lab-scale (1kg U/day) multi-electrode electrorefiner made by the Korea Atomic Energy Research Institute (KAERI). The operating temperature was $500^{\circ}C$ and LiCl-KCl eutectic with 3.5wt% $UCl_3$ was used for molten salt. The efficiency of the uranium electrorefining apparatus was improved by lowering the cell potential as the distance between the electrodes decreased and the anode/cathode area ratio increased. This approach will be useful for constructing database for safety design of high throughput spent nuclear fuel electrorefiners.