• Title/Summary/Keyword: LiCl-KCl eutectic

Search Result 57, Processing Time 0.025 seconds

Actinide Drawdown From LiCl-KCl Eutectic Salt via Galvanic/chemical Reactions Using Rare Earth Metals

  • Yoon, Dalsung;Paek, Seungwoo;Jang, Jun-Hyuk;Shim, Joonbo;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.373-382
    • /
    • 2020
  • This study proposes a method of separating uranium (U) and minor actinides from rare earth (RE) elements in the LiCl-KCl salt system. Several RE metals were used to reduce UCl3 and MgCl2 from the eutectic LiCl-KCl salt systems. Five experiments were performed on drawdown U and plutonium (Pu) surrogate elements from RECl3-enriched LiCl-KCl salt systems at 773 K. Via the introduction of RE metals into the salt system, it was observed that the UCl3 concentration can be lowered below 100 ppm. In addition, UCl3 was reduced into a powdery form that easily settled at the bottom and was successfully collected by a salt distillation operation. When the RE metals come into contact with a metallic structure, a galvanic interaction occurs dominantly, seemingly accelerating the U recovery reaction. These results elucidate the development of an effective and simple process that selectively removes actinides from electrorefining salt, thus contributing to the minimization of the influx of actinides into the nuclear fuel waste stream.

Study on a Phosphorylation of Rare Earth Nuclide (Nd) in LiCl-KCl-NdCl3 System using Li3PO4-K3PO4 (LiCl-KCl-NdCl3계에서 Li3PO4-K3PO4를 이용한 희토류 핵종(Nd) 인산화에 관한 연구)

  • Eun, Hee-Chul;Kim, Jun-Hong;Choi, Jung-Hoon;Cho, Yung-Zun;Lee, Tae-Kyo;Park, Hwan-Seo;Park, Geun-Il
    • Journal of Advanced Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.125-129
    • /
    • 2013
  • In the pyrochemcial process of spent nuclear fuel, it is necessary to separate rare earth nuclides from LiCl-KCl eutectic waste salt for radioactive waste reduction. This paper presents the phosphorylation of neodymium chloride in LiCl-KCl-NdCl3 system using Li3PO4-K3PO4 as a phosphorylation agent in a chemical reactor with pitched blade impellers. The phosphorylation test was performed changing operation temperature, stirring rate, and amount of phosphorylation agent. Neodymium chloride was effectively converted into neodymium phosphate (NdPO4). It was confirmed that more than 99 wt% of neodymium can be separated from LiCl-KCl-NdCl3 system using a phosphorylation method l

A Basic Study on Separation of U and Nd From LiCl-KCl-UCl3-NdCl3 System (LiCl-KCl-UCl3-NdCl3 system에서 U 및 Nd 분리에 관한 기초연구)

  • Kim, Tack-Jin;Ahn, Do-Hee;Eun, Hee-Chul;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.59-64
    • /
    • 2018
  • In case of high contents of rare earths in the LiCl-KCl salt, it is not easy to recover U and TRU metals as a usable resource form from LiCl-KCl eutectic salts generated from the pyroprocessing of spent nuclear fuel. In this study, a conversion of $UCl_3$ into an oxide form using $K_2CO_3$ and an electrodeposition of $NdCl_3$ into a metal form in $LiCl-KCl-UCl_3-NdCl_3$ system were conducted to resolve the problem. Before conducting the conversion, experimental conditions for the conversion were determined by performing a thermodynamic equilibrium calculation. In this study, almost all of $UCl_3$ disappeared in the LiCl-KCl salt when the injection of $K_2CO_3$ reached theoretical equivalent for the conversion, and then $NdCl_3$ was effectively electrodeposited as a metal form using liquid zinc cathode. After that, the LiCl-KCl salt became transparent, and uranium oxides were precipitated to the bottom of the LiCl-KCl salt. These results will be utilized in designing a process to separate U and rare earths in LiCl-KCl salt.

A Study on Electrochemical Behaviors of Samarium Ions in the Molten LiCl-KCl Eutectic Using Optically Transparent Electrode (LiCl-KCl 용융염에서 광학적으로 투명한 전극을 이용한 사마륨 이온의 전기화학적 거동에 관한 연구)

  • Lee, Ae-Ri;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.313-320
    • /
    • 2017
  • A spectroelectrochemical method has been applied to investigate the electrochemical behaviors and identify the kinds of samarium ions dissolved in high temperature molten LiCl-KCl eutectic. An optically transparent electrode (OTE) fabricated with a tungsten gauze as a working electrode has been used to conduct cyclic voltammetry and potential step chronoabsorptometry. Based on the reversibility of the redox reaction of $Sm^{3+}/Sm^{2+}$, which was determined from the cyclic voltammograms, the formal potential and the diffusion coefficient were calculated to be -1.99 V vs. $Cl_2/Cl^-$ and $2.53{\times}10^{-6}cm^2{\cdot}s^{-1}$, respectively. From the chronoabsorptometry results at the applied potential of -1.5 V vs. Ag/AgCl (1wt%), the characteristic peaks of absorption for samarium ions were determined to be 408.08 nm for $Sm^{3+}$ and 545.62 nm for $Sm^{2+}$. Potential step chronoabsorptometry was conducted using the anodic and the cathodic peak potentials from the voltammograms. Absorbance analysis at 545.63 nm shows that the diffusion coefficient of $Sm^{3+}$ is $2.15{\times}10^{-6}cm^2{\cdot}s^{-1}$, which is comparable to the value determined by cyclic voltammetry at the same temperature.

EPR Investigation on a Quantitative Analysis of Eu(II) and Eu(III) in LiCl/KCl Eutectic Molten Salt

  • Park, Yong-Joon;Kim, Tack-Jin;Cho, Young-Hwan;Jung, Yong-Ju;Im, Hee-Jung;Song, Kyu-Seok;Jee, Kwang-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.127-129
    • /
    • 2008
  • EPR spectroscopic technique was applied for a quantitative analysis of Eu(II) for a speciation of europium in a LiCl-KCl eutectic melt. By adopting the first absorption line of each isotopes (151Eu and 153Eu), a calibration plot was obtained. The calibration of the EPR intensity shows a good linearity according to the amount of Eu(II). The EPR intensity was identified to increase proportionally with a decrease of the attenuation parameter for EPR microwave power. The fluorescence technique was used qualitatively to find whether either of Eu(II) or Eu(III) ions exists in a molten salt sample. The ICP-AES technique was also adopted to determine the total concentration of europium in the sample, since EPR is only sensitive for detecting the Eu(II) ion. The extent of the reduction of Eu(III) in the LiCl-KCl eutectic melt at 723 K was determined by using this technique.

Effect of Rare Earth Elements on Uranium Electrodeposition in LiCl-KCl Eutectic Salt (LiCl-KCl 공융염에서 우라늄 전착거동에 대한 희토류 원소들의 영향)

  • Park, Sungbin;Kang, Young-Ho;Hwang, Sung Chan;Lee, Hansoo;Paek, Seungwoo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.263-269
    • /
    • 2015
  • It is necessary to investigate the electrodeposition behavior of uranium and other elements on the cathode in the electrorefining process to recover the uranium selectively from the reduced metals of the electrolytic reduction process since transuranic elements and rare earth elements is dissolved in the LiCl-KCl eutectic salt. Study on separation factors of U, Ce, Y and Nd based on U and Ce was performed to investigate the deposition behavior of the cathode with respect to the concentration of rare earth elements in LiCl-KCl eutectic salt. After electrorefining with constant current mode by using Ce metal as a sacrifice anode, the contents of U, Ce, Y and Nd in the salt phase and the deposit phase of the cathode were analyzed, and separation factors of the elements were obtained from the analyses. Securing conditions of pure uranium recovery in the elctrorefining process was investigated by considering the separation factors with respect to $UCl_3$ and $CeCl_3/UCl_3$ ratio.

Calculations of Solubility Preduct Constants for Metal Oxides in the KCI-LiCl Eutectic Composition by Exact Thermodynamic Cycle (KCl-LiCl 공정 용융염욕에서 열역학적 싸이클법에 의한 금속산화물의 용해도적 계산)

  • 백영현
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.4
    • /
    • pp.225-229
    • /
    • 1990
  • Solubility Products of metal oxides, such as Al2O3 and UO2 in KCl-LiCl eutectic composition was calculated by using an exact an exact thermodynamic. The values for Al2O3 ThO2 and UO2 were found to be 2.51$\times$10-27, 4.97$\times$10-15and 2.17$\times$10-12in mole per liter basis at 743 K, respectively. The correlation of theoretical values with those of experiment were in good agreement. It is worth to note that the exact cycle method was proved to be satisfactory in making predictions of solubillities and also solubility products of sparingly soluble metal oxides in an ionic salt system.

  • PDF

Elucidation of Electrode Reaction of EuCl3 in LiCl-KCl Eutectic Melts through CV Curve Analysis

  • Kim, Tack-Jin;Jung, Yong-Ju;Kim, Si-Hyung;Paek, Seung-Woo;Ahn, Do-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.863-866
    • /
    • 2011
  • The electrode reaction of $Eu^{3+}$ in a LiCl-KCl eutectic melt has been re-examined using cyclic voltammetry (CV). In this work, for the first time, the kinetic details of a $Eu^{3+}/Eu^{2+}$ redox system have been completely elucidated, along with the thermodynamic property, through a curve fitting applied to experimental CV data, which were obtained in a wide scan rate range of 0.5 to 10 V/s. The simulated results showed an excellent fit to all experimental CV data simultaneously, even though the curve fittings were performed within a large dynamic range of initial transfer coefficient values, formal potentials, and standard rate constants. As a result, a proper formal potential, transfer coefficient, and standard rate constant for the $Eu^{3+}/Eu^{2+}$ redox system were successfully extracted using the CV curve fitting.

Assessment on Recovery of Cesium, Strontium, and Barium From Eutectic LiCl-KCl Salt With Liquid Bismuth System

  • Woods, Michael E.;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.421-437
    • /
    • 2020
  • This study provides an assessment on a proposed method for separation of cesium, strontium, and barium using electrochemical reduction at a liquid bismuth cathode in LiCl-KCl eutectic salt, investigated via cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS). CV studies were performed at temperatures of 723-823 K and concentrations of the target species up to 4.0wt%. Redox reactions occurring during potential sweeps were observed. Concentration of BaCl2 in the salt did not seem to influence the diffusivity in the studied concentration range up to 4.0wt%. The presence of strontium in the system affected the redox reaction of lithium; however, there were no distinguishable redox peaks that could be measured. Impedance spectra obtained from EIS methods were used to calculate the exchange current densities of the electroactive active redox couple at the bismuth cathode. Results show the rate-controlling step in deposition to be the mass transport of Cs+ ions from the bulk salt to the cathode surface layer. Results from SEM-EDS suggest that Cs-Bi and Sr-Bi intermetallics from LiCl-KCl salt are not thermodynamically favorable.

Studying Thermochemical Conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl Eutectic Melt

  • Samanta, Nibedita;Chandra, Manish;Maji, S.;Venkatesh, P.;Annapoorani, S.;Jain, Ashish
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.279-291
    • /
    • 2022
  • In this report the thermochemical conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl melt at 773 K is discussed. The final product was a mixture of SmCl3, Al2O3, unreacted Sm2O3 and AlCl3 in the chloride melt. The electrochemical attributes of the mixture was analyzed with cyclic voltammetry (CV) and square wave voltammetry (SWV). The crystallographic phases of the mixture were studied with X-ray diffraction (XRD) technique. The major chemical conversion was optimized by varying the effective parameters, such as concentrations of AlCl3, duration of reaction and the amount of LiCl-KCl salt. The extent of conversion and qualitative assessment of efficiency of the present protocol were evaluated with fluorescence spectroscopy, UV-Vis spectrophotometry and inductively coupled plasma atomic emission spectroscopy (ICP-AES) studies of the mixture. Thus, a critical assessment of the thermochemical conversion efficiency was accomplished by analysing the amount of SmCl3 in LiCl-KCl melt. In the process, a conversion efficiency of 95% was achieved by doubling the stoichiometric requirement of AlCl3 in 50 g of LiCl-KCl salt. The conversion reaction was found to be very fast as the reaction reached equilibrium in 15 min.