• 제목/요약/키워드: LiBr/water

검색결과 112건 처리시간 0.023초

가스흡수식 냉온수기 열교환기용 세관의 부식특성에 관한 연구 (The Study on Corrosion Characteristics of Heat Exchanger Tube for Gas Absorption Refrigeration & Hot Water System)

  • 정기철
    • 한국가스학회지
    • /
    • 제6권1호
    • /
    • pp.92-97
    • /
    • 2002
  • 가스흡수식 냉온수기의 작동매체로 사용되고 있는 LiBr 수용액 중에서 열교환기 세관용 재료인 동 세관 및 동합금재인 큐프로니켈 세관의 부식특성에 관한 연두를 하기 위하여 $62\%$ LiBr 수용액 중에서 각 재료에 대한 전기화학적 분극실험을 실시하여 부식특성을 고찰한 결과 다음과 같은 결론을 얻었다 1) 열교환기 세관재의 분극저항은 $30\%$ 큐프로니켈 세관 > $10\%$ 큐프로니켈 세관 > 동 세관의 순으로 높게 나타난다 2) 큐프로니켈 세관의 개로전위는 동 세관보다 귀전위화되면서 부식전류밑도는 더 억제된다 3) $30\%$ 큐프로니켈 세관의 부동태 영역은 $10\%$ 큐프로니켈 세관보다 전위구간이 더 크게. 나타나면서 부동태유지 전류밀도는 더 낮아진다.

  • PDF

이중 효용과 일중 효용을 복합한 다단 재생 고효율 흡수식 냉동 사이클 개발 (Development of High Efficiency Cycle by Combining Double-Effect with Single-Effect Absorption Chiller Systems)

  • 윤상국
    • 설비공학논문집
    • /
    • 제29권7호
    • /
    • pp.360-365
    • /
    • 2017
  • Recently, development efforts of triple-effect absorption chiller have been increased in order to improve the efficiency of double-effect absorption chiller. However, triple-effect absorption chiller has some disadvantages, including high corrosion characteristic of LiBr solution at high temperature of $200^{\circ}C$. Moreover, it is necessary to develop new components for operation under high pressure of 2 bars even though COP is increased to 1.6 or 1.7. The objective of this study was to introduce a new system by combining double effect absorption chiller with single effect absorption chiller with multi-generators using bypass flow of LiBr dilute solution to $3^{rd}$ generator to overcome the disadvantages of triple-effect chiller and improve energy efficiency. Results indicate that the new absorption cycle had a much higher efficiency than double-effect chiller system, showing significant improvement when bypass solution flow rate of 25% was applied to the $3^{rd}$ generator using the main dilute solution of the absorber. The COP of the new chiller system was found to be 1.438, which was 21.7% higher than that (1.18) of the present double-effect system. The COP was decreased when solution by-pass rate to the $3^{rd}$ generator was increased. In addition, lower cooling water temperature caused higher COP. Therefore, the multi-generator system with by-pass solution might be an excellent chiller alternative to triple-effect absorption chiller with higher efficiency.

Integral Analysis of the Effects of Non-absorbable gases on the Heat Mass Transfer of Laminar Falling Film

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.56-66
    • /
    • 1998
  • The absorption process of water vapor in a liquid film is an important process in LiBr-Water absorption system. The composition of the gas phase, in which a non-absorbable gas is combined with the absorbate, influences the transport characteristics. In the present work, the absorption processes of water vapor into aqueous solutions of lithium bromide in the presence of non-absorbable gas are investigated. The continuity, momentum, energy and diffusion equations for the solution film and gas are formulated in integral forms and solved numerically. It is found that the mass transfer resistance in gas phase increases with the concentration of non-absorbable gas. However the primary resistance to mass transfer is in the liquid phase. As the concentration of non-absorbable gas in the absorbate increases, the interfacial temperature and concentration of absorbate in solution decrease, which results in the reduction of absorption rate. The reduction of mass transfer rate is found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of tube where the non-absorbable gas accumulates. At higher non-absorbable gas concentration, the decrease of absorption rate seems to be linear to the concentration of non-absorbable gas.

  • PDF

Noncondensable gas's influence in waster vapor absorption accompanying interfacial disturbance into aqueous solution of LiBr

  • Dong-Ho RIE;Keun-Oh Lee
    • 한국안전학회지
    • /
    • 제7권2호
    • /
    • pp.63-70
    • /
    • 1992
  • 흡수식 열펌프에서 폭 넓게 사용되고 있는 대표적인 냉매/흡수용액은 $H_2O$ / LiBr 계이다 그러나, LiBr 수용액의 점성계수는 LiBr의 농도가 커짐에 따라 증가하기 때문에, LiBr수용액의 농용액 영역에서 물질확산계수가 감소한다. 이 결점을 보완하기 위해 흡수용액에 계면활성제를 첨가시키므로서 흡수를 촉진시키는 방식을 이용하고 있다. 계면활성제의 첨가에 의한 흡수용액의 열 및 물질이동 촉진에 관한 연구는 계면활성제 첨가농도에 의해 흡수용액의 표면상에서 게면활성제가 액적으로 존재하는 계면활성제 포화용해도 이상의 조건에서 발생하는 마랑고니대류가 효과적이다. 이 흡수촉진효과는 냉매증기의 흡수시 흡수용액표면상의 분포한 계면활성제와 흡수용액사이의 표면장력차에 기인하는 계면교한 현상에 기인한다. 그러나, 이흡수촉지효과는 냉매증기의 흡수가 일어나는 흡수기 내부의 不안정상태, 즉, 불응축성가스(공기)가 존재하지 않는 조건하에서 이루어지며, 불응축성가스가 흡수촉진저하(열 및 물질이동의 저하)에 기인하는 연구는 보고된 바 없다. 이러한 불응축성가스가 흡수기 내부에 존재할 때 계면교한의 거동 및 열 및 물질이동저하현상을 파악하기 위하여 계면활성제 농도변화(포화용해도 이상 및 이하의 두 조건)에 따른 증기흡수 실험 및 계면교한가시화 실험을 행하였다. 결과적으로 본실험을 통하여 불응축성가스가 수증기흡수에 끼치는 영향을 파악(계면교란의 악화) 첨가시의 흡수량과 不安定상태(불응축성가스가 존재시)의 증기흡수량의 비교에 의해 급격한 증기흡수저하가 不安定상태하에서 발생함으로서 불응축성가스가 흡수촉진효과(계면교한현상)을 저해시키는 결론을 얻었다.es and facts obtained by the expenence in this area, respectively. Both depth-first search and backward chaining schemes are used in reasoning process. This expert system is written in an artificial intelligence language "PROLOG", and its availability is demonstrated through the case study.e함량은 감소되었으며 sulfhydryl기가 증가됨에 따라서 disulfide groups은 감소되는 경향을 보였고 ascorbic acid는 열처리 온도뿐만 아니라 시간과도 관련이 있음을 알 수 있었다. 저온 살균유와 초고온 살균유 사이에서는 지표물질들의 함량이 다소 차이가 있음을 볼 수 있었다.담시간이 구체적으로 기술되지 않았으며, 고유한 언어를 통역하는 과정에서 의미론적 문제에 대한 고려가 부족하였다. 면접과 기록과정에서 보면 자료의 기록과정과 분류 및 분석과정이 명시되어 있지 않았다. 참여관찰과 면접방법을 사용시 이에 대한 자세한 기술이 되어 있지 않았다. 5. 연구결과의 적용 및 이에 대한 논의는 상당히 제한되어 있었는데, 수편의 연구만이 방법론 문제점과 앞으로의 연구분야에 대한 전망을 제시하였으며, 특이한 것은 어 떤 연구자도 이른 개발을 위한 적용 및 임상실무적 차원에서 간호에 대한 제언을 하지 않았다.유모델변수들은 유입-유출 자료들로부터 평가할 수 있으며, 이를 위해서 본 논문에서는 Gauss-Newton 방법을 이용한 Bard

  • PDF

일중효용 사이클과 일중효용/2단승온 사이클을 이용한 태양열 흡수식 냉방시스템의 비교 (Comparison Between Two Solar Absorption Cooling System Using Single Effect and Single Effect/Double Lift Cycle)

  • 정시영;이상수;조광운;백남춘
    • 설비공학논문집
    • /
    • 제12권3호
    • /
    • pp.267-276
    • /
    • 2000
  • A numerical study has been carried out to find out the optimal design condition of a solar absorption cooling system. The system was composed of solar collectors and an absorption chiller with LiBr/water The System performance with commercial single effect(SE) cycle and a new single effect/double lift(SE/DL) cycle utilizing low temperature hot water was calculated and compared. It was found that the required solar collector area grew exponentially as the overall heat loss coefficient of solar collectors increased. For instance, the required area for cooling capacity of 1 USRT was $17m^2$ if heat loss coefficient was 4 W/$m^2\;cdot\;K$. If heat loss coefficient was doubled($8\;W/m^2\;cdot\;$K), the required collector area was increased by 6 times($100m^2$) .It was also found that the SE-cycle as the heat loss coefficient of solar collectors increased. Generally, a SE/DL-cycle seems to be more advantageous than a SE-cycle if loss coefficient of solar collector is greater than 4 W/$m^2\;cdot\;K$.

  • PDF

제 2종 LiBr-H2O 흡수식 히트펌프의 운전 변수에 따른 성능 특성 수치 해석 (Effects of Operation Conditions on the Performance of Type II LiBr-H2O Absorption Heat Pump)

  • 윤준성;권오경;차동안;배경진;김인관;김민수;박찬우
    • 설비공학논문집
    • /
    • 제29권1호
    • /
    • pp.7-14
    • /
    • 2017
  • This study carried out a numerical analysis of the effects of hot waste water supply on the performance of a Type II absorption heat pump. There are two types of hot waste water supply, regular series flow and reverse series flow. Also it investigated the interaction between each type of flow and heat exchange solutions. As the effectiveness of heat exchange solutions increase, the steam generation and (COP) increase as well. If the effectiveness of a heat exchange solution is lower than 0.566, the steam generation rate of the reverse flow is lower than that of the regular series flow. A high effectiveness of heat exchange solution is therefore required to make a larger amount of steam in reverse series flow than with ordinary series flow. The COP difference between the two types of flow decreases with the increasing effectiveness of the heat exchange solution. Thus, a reverse flow type absorption heat pump can match the high steam generation rate and COP of the ordinary flow type when a highly effective heat exchange solution is applied.

150 RT급 흡수식 열펌프용 고온재생기의 열전달 특성 (The heat transfer characteristics of a desorber for 150 RT absorption heat pump)

  • 박찬우;정종수
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.369-376
    • /
    • 1999
  • Experiments were carried out to study the heat transfer characteristics of a disrober for 150 RT LiBr-water absorption heat pump. An experimental apparatus was divided into four sections, a combustion chamber area, two bare-tube areas, and finally a finned-tube area to quantify the heat transfer rate of each section by measuring the generation rate of vapor. Dividing plates was installed at the upper inside part of deserter to prohibit the moving of vapor generated at heating tubes of a section to another section near. In the first bare-tube area, the generation rate of vapor was the largest among the four sections. The finned-tube area only contributed to give sensible heat increase of solution to the saturation temperature. The heat transfer area of the finned-tube area was 52.2%, which absorbed only 9.2% of the total heat from the combustion gas. On the contrary, the heat transfer area of the first bare-tube area was 16.6%, but it absorbed 52.4% of the total absorbed heat. The temperature of the solution at upper part at the finned-tube area was lower than that of the lower part, because weak solution came in upper part of the finned-tube area. But, this tendency was changed at the first and second bare-tube area due to the vigorous heat transfer and fluid flow enhanced by vapor generation through heating tubes. The overall heat transfer coefficient and heat flux were the largest at the first bare-tube area among the other sections.

  • PDF

Molecular Dynamics Simulation Study for Hydroxide Ion in Supercritical Water using SPC/E Water Potential

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.2925-2930
    • /
    • 2013
  • We present results of molecular dynamics simulations for hydroxide ion in supercritical water of densities 0.22, 0.31, 0.40, 0.48, 0.61, and 0.74 g/cc using the SPC/E water potential with Ewald summation. The limiting molar conductance of $OH^-$ ion at 673 K monotonically increases with decreasing water density. It is also found that the hydration number of water molecules in the first hydration shells around the $OH^-$ ion decreases and the potential energy per hydrated water molecule also decreases in the whole water density region with decreasing water density. Unlike the case in our previous works on LiCl, NaCl, NaBr, and CsBr [Lee at al., Chem. Phys. Lett. 1998, 293, 289-294 and J. Chem. Phys. 2000, 112, 864-869], the number of hydrated water molecules around ions and the potential energy per hydrated water molecule give the same effect to cause a monotonically increasing of the diffusion coefficient with decreasing water density in the whole water density region. The decreasing residence times are consistent with the decreasing potential energy per hydrated water molecule.

Non-absorbable Gas Effects on Heat and Mass Transfer in Falling Film Absorption

  • Kim, Byongjoo;Lee, Chunkyu
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.581-589
    • /
    • 2003
  • Film absorption involves simultaneous heat and mass transfer in the gas-liquid system. While the non-absorbable gas does not participate directly In the absorption process. its pretence does affect the overall heat and mass transfer. An experimental study was performed to investigate the heat and mass transfer characteristics of LiBr-H$_2$O solution flow ing over 6-row horizontal tubes with the water vapor absorption in the pretence of non-absorbable gases. The volumetric concentration of non-absorbable gas, air, was varied from 0.17 to 10.0%. The combined effects of the solution flow rate and its concentration on the heat and mass transfer coefficients were also examined. The presence of 2% volumetric concentration of air resulted in a 25% reduction in the Nusselt number and 41% reduction in the Sherwood number Optimum film Reynolds number was found to exist at which the heat and mass transfer reach their maximum value independent of air contents. Reduced Nusselt and Sherwood numbers. defined as the ratio of Nusselt and Sherwood numbers at given non-absorbable gas content to that with pure water vapor, were correlated to account for the reduction in the heat and mass transfer due to non-absorbable gases in a falling film absorption process.

Electrochemical Corrosion Behavior of Duplex Stainless SteelAISI 2205 in Ethylene Glycol-Water Mixture in the Presence of50 W/V % LiBr

  • Goodarzi, A.;Danaee, I.;Eskandari, H.;Nikmanesh, S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.58-67
    • /
    • 2016
  • The corrosion behavior of duplex stainless steel AISI 2205 was investigated in ethylene glycol-water mixture in the presence of 50 W/V % LiBr at different concentrations and different temperatures. Cyclic polarization, impedance measurements and Mott-Schottky analysis were used to study the corrosion behavior the semi conductive properties of the passive films. The results showed that with increasing in the ethylene glycol concentration to 10 V/V%, the corrosion rate of the steel alloy substrate increased. In higher concentrations of ethylene glycol, corrosion current of steel decreased. The results of scanning electron microscopy of electrode surface confirmed the electrochemical tests. Electrochemical experiment showed that duplex steel was stable for pitting corrosion in this environment. The increase in the ethylene glycol concentration led to increasing the susceptibility to pitting corrosion. The corrosion current increased as the temperature rise and also pitting potentials and repassivation potentials shifted towards the less positive values as the temperature increased. According to Mott-Schottky analysis, passive films of stainless steel at the different temperatures showed both n-type and p-type semiconductor behavior in different potential.