• Title/Summary/Keyword: Li-doping

Search Result 220, Processing Time 0.048 seconds

Effect of Li-Incorporation on the Properties of ZnO Thin Films Deposited by Ultrasonic-Assisted Spray Pyrolysis Deposition Method (초음파 분무 열분해법에 의해 성장된 ZnO 박막의 특성에 미치는 Li 첨가의 영향)

  • Han, In Sub;Park, Il-Kyu
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.101-107
    • /
    • 2018
  • Li-incorporated ZnO thin films were deposited by using ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of Li-incorporation on the performance of ZnO thin films, the structural, electrical, and optical properites of the ZnO thin films were analyzed by means of X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), Hall effect measurement, and UV-Vis spectrophotometry with variation of the Li concentraion in the ZnO sources. Without incorporation of Li element, the ZnO surface showed large spiral domains. As the Li content increases, the size of spiral domains decreased gradually, and finally formed mixed small grain and one-dimensional nanorod-like structures on the surface. This morphological evolution was explained based on an anti-surfactant effect of Li atoms on the ZnO growth surface. In addition, the Li-incorporation changed the optical and electrical properties of the ZnO thin films by modifying the crystalline defect structures by doping effects.

Luminescent characteristics of OLED doped with DCM2 and rubrene (Rubrene과 DCM2가 첨가된 적색 유기전계발광소자의 발광특성)

  • 박용규;성현호;김인회;조황신;양해석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.939-942
    • /
    • 2001
  • We fabricated Red Organic light-emitting devices(OLED). The Basic Device Structure is ITO/hole transfer layer, TPD(50nm)/red emitting layer, Alq3 doped with DCM2 or DCM2:rubrene(xnm)/electorn transfer layer, Alq3(50-xnm)/LiF(0.8nm)/Al(8nm) . The thickness of emitting layer(xnm) changed 5, 10, 20nm. we demonstrate red emitting OLED with dependent on the thickness and concentrators of Alq3 layer doped with DCM2 or co-doped with DCM2:ruberene. The Emission color and Brightness are changed with doping or co-doping condition, dopant concentarton. In the case of rubrene:DCM2 co-doped layer structure, the red color Purity and device efficiency is improved. The CIE index of rubrene co-doped OLED is x=0.67, y=0.31. By co-doping the Alq3 layer with DCM2, rubrene, EL efficiency improved from 0.38cd/A to 0.44cd/A in comparison whit DCM2 doped Alq3 layer.

  • PDF

Improved Cycle Performance of Sulfur-Doped LiFePO4 Material at High Temperatures

  • Lee, Seung-Byung;Cho, Seung-Hyun;Aravindan, Vanchiappan;Kim, Hyun-Soo;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2223-2226
    • /
    • 2009
  • Pristine and sulfur-doped (LiFe$PO_{3.98}S_{0.03}$) lithium iron phosphates were synthesized by a sol-gel method. The XRD pattern of the prepared materials suggested an orthorhombic structure with a Pnma space group and an absence of impurities. The Li/LiFe$PO_4$ or LiFe$PO_{3.98}S_{0.03}$ cells were employed for cycling studies at various temperatures (25, 50 and $60\;{^{\circ}C}$). In all cases, the Li/LiFe$PO_{3.98}S_{0.03}$ cell showed an improved performance with a stable discharge behavior of ~155 mA$hg^{-1}$. Nevertheless, pristine LiFeP$O_4$ cells presented poor discharge behavior at elevated temperatures, especially $60\;{^{\circ}C}$.

Properties of charge/discharge in synthesis method or substituting transition element for Li-Mn Oxide (전이금속 치환 및 합성방법에 따른 Li-Mn 산화물의 충방전 특성)

  • Jee, Mi-Jung;Choi, Byung-Hyun;Lee, Dae-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.46-46
    • /
    • 2007
  • There has been rapid progress in the portable electronics industry. which has led to a great increase for a demand of portable, lightweight power sources. Lithium 2'nd batteries have met these demand. and many studies on the cahtod materials for the lithium 2,nd batteries have been reported during the last decade. Possible candidates for the cathode materials for lithium 2,nd batteries are $LiCoO_2$, $LiNiO_2$, and $LiMn_2O_4$. Currently $LiCoO_2$ is widely used. but $LiMn_2O_4$ is an excellent alternative material in view of its several advantages such a low cost as well as the wasy availability of raw materials and environmental benignity. In this study, find the most suitable synthesis method that satisfied high capacitor and stability cycle character, etc in Li-Mn oxide for 2'nd batteries. And also made an experiment on doping the $LiMn_2O_4$ spinel with a small amount of metal ions has a remarkable effect on the electrochemical properties and characterics of powder, BET, PSA, Porosity, etc.

  • PDF

Electrochemical Properties of Al Doped Li(Ni1/3Co1/3Mn1/3-xAlx)O2, Cathode Materials (알루미늄이 첨가된 Li(Ni1/3Co1/3Mn1/3-xAlx)O2 양극활물질의 전기화학적 특성)

  • Kim Seon-Hye;Shim Kwang-Bo;Kim Chang-Sam
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.64-69
    • /
    • 2006
  • Cathode materials of Al-doped $Li(Ni_{1/3}Co_{1/3}Mn_{1/3-x}Al_x)O_2$ (x=0.0, 0.005, 0.01 0.05) for lithium ion batteries were synthesized with ultra-sonic spray pyrolysis method and single-step heat treatment. No secondary phases were found in all synthesized powders. The intensity ratio of $I_{003}\;to\;I_{104}$, however, slightly decreased and the particle size increased with the Al contents. The cells with bare, 0.5 and 1.0 at% Al-doped powders showed the initial discharge capacities of 182, 180 and $184mAhg^{-1}$ in a voltage range of $3.0\sim4.5V$ at 1C rate, and the capacity retentions of 81, 77 and 78% at the end of 30 cycles, respectively. But in the voltage range of $3.0\sim4.6V$, the Al-doping significantly enhanced the cycle stability. For example, the discharge capacity after 50 cycles was maintained to 70% in the 0.5 at% Al-doped sample compared to only 30% in no doped sample. The improvement of the cycle stability was thought to be due to $Mn^{3+}$ ion decrease as the Al doping from the XPS analysis results.

The Effects of Lithium-Incorporated on N-ZTO/P-SiC Heterojunction Diodes by Using a Solution Process (용액공정으로 제작한 리튬 도핑된 N-ZTO/P-SiC 이종접합 구조의 전기적 특성)

  • Lee, Hyun-Soo;Park, Sung-Joon;An, Jae-In;Cho, Seulki;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.203-207
    • /
    • 2018
  • In this work, we investigate the effects of lithium doping on the electric performance of solution-processed n-type zinc tin oxide (ZTO)/p-type silicon carbide (SiC) heterojunction diode structures. The proper amount of lithium doping not only affects the carrier concentration and interface quality but also influences the temperature sensitivity of the series resistance and activation energy. We confirmed that the device characteristics vary with lithium doping at concentrations of 0, 10, and 20 wt%. In particular, the highest rectification ratio of $1.89{\times}107$ and the lowest trap density of $4.829{\times}1,022cm^{-2}$ were observed at 20 wt% of lithium doping. Devices at this doping level showed the best characteristics. As the temperature was increased, the series resistance value decreased. Additionally, the activation energy was observed to change with respect to the component acting on the trap. We have demonstrated that lithium doping is an effective way to obtain a higher performance ZTO-based diode.

Electrochemical Characteristic Change of Cr-doped Li4Ti5O12 due to Different Water Solubility of Dopant Precursors (도판트 프리커서의 용해도 차이에 의한 Cr-doped Li4Ti5O12의 전기화학적 특성 변화)

  • Yun, Su-Won;Song, Hannah;Kim, Yong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • $Li_4Ti_5O_{12}$ (LTO) have attracted much attention of researchers in the field of energy storage, because of their excellent stability for electric vehicle application. A main drawback of LTO is however their insulating nature due to the wide bandgap, which should be addressed to enhance the battery performance. In this study, we investigated the effect of water solubility of dopant precursor on the electrochemical characteristics of conducting LTO prepared by doping with $Cr^{3+}$ ions with the well-known wet-mixing method. The solubility of dopant precursor directly affected the morphology and the phase of doped LTO, and therefore their battery performance. In the case of employing the most soluble dopant precursor, $Cr(NO_3)_2$, the doped LTO demonstrated a markedly enhanced discharge capacity at high C-rate (130mAh/g @ 10C), which is about 2 times higher value than that of bare LTO.