• Title/Summary/Keyword: Li-Ti

Search Result 668, Processing Time 0.037 seconds

Microwave Dielectric Properties $Ca(Li_{1/4}Nb_{3/4})O_3-CaTiO_3$ ceramic systems ($Ca(Li_{1/4}Nb_{3/4})O_3-CaTiO_3$계 세라믹스의 마이크로파 유전특성)

  • Yoon, Sang-Ok;Kim, Dae-Min;Shim, Sang-Heung;Kang, Ki-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.139-142
    • /
    • 2003
  • Microwave dielectric properties of $Ca(Li_{1/4}Nb_{3/4})O_3-CaTiO_3$ ceramic systems were investigated with calcination temperatures and amounts of $CaTiO_3$ in the range of 0.2 to 0.4mol. $Ca(Li_{1/4}Nb_{3/4})O_3$ ceramics having orthorhombic crystal structure could be synthesized at $750^{\circ}C$ and sintered well at $1250^{\circ}C$. They showed the dielectric constant of 26, quality factor($Q{\times}f_o$) of 13,000 and temperature coefficient of resonant frequency(${\tau}_f$) of $-49{\pm}2ppm/^{\circ}C$ With adding the $CaTiO_3$ amount the dielectric constant and ${\tau}_f$ increased due to the solute of $CaTiO_3$ but the quality factor decreased. The 0.7$Ca(Li_{1/4}Nb_{3/4})O_3-0.3CaTiO_3$ ceramic showed the dielectric constant of 44, quality factor($Q{\times}f_o$) of 12,000 and ${\tau}_f$ of $-9{\pm}1ppm/^{\circ}C$.

  • PDF

Microwave Dielectric Properties of $0.7Ca(Li_{1/4}Nb_{3/4})O_3-0.3CaTiO_3$ Ceramics Added with zinc-borosilicate Glass Frit (Zinc-borosilicate Glass Frit 첨가에 따른 $0.7Ca(Li_{1/4}Nb_{3/4})O_3-0.3CaTiO_3$ 세라믹스의 마이크로파 유전 특성)

  • Yoon, Sang-Ok;Kim, Kwan-Soo;Jo, Tae-Hyun;Oh, Chang-Yong;Kim, Chan-Hang;Shim, Sang-Heung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.371-374
    • /
    • 2004
  • 저온동시 소성용(low temperature co-fired ceramics, LTCC) 마이크로파 유전체을 만들기 위해 $Ca(Li_{1/4}Nb_{3/4})O_3$ 마이크로파 유전체 세라믹스에 zinc-borosililcate glass를 첨가하여 소결 특성과 마이크로파 유전 특성을 조사하였다. $Ca(Li_{1/4}Nb_{3/4})O_3$$0.7Ca(Li_{1/4}Nb_{3/4})O_3-0.3CaTiO_3$에 zinc-borosilicate를 $5{\sim}30wt%$ 첨가하여 소결한 결과 $875{\sim}925^{\circ}C$에서 동시 소성이 가능한 것으로 확인되었으며 zinc-borosilicate glass의 함량이 증가할수록 저온에서 소성이 가능하였지만 과량의 액상과 2차상이 형성되면서 유전율과 품질계수가 저하되는 경향을 나타내었다. $Ca(Li_{1/4}Nb_{3/4})O_3$에 5wt%의 zinc-borosilicate를 첨가하여 $900^{\circ}C$에서 소성한 결과 가장 우수한 유전 특성$(\epsilon_r=17.45,\;Q{\times}f_0=5487)$을 나타내었고, 유전율을 높이기 위해 $CaTiO_3$를 0.3mol% 첨가한 $0.7Ca(Li_{1/4}Nb_{3/4})O_3-0.3CaTiO_3$에 10wt%의 zinc-borosilicate를 첨가하여 $925^{\circ}C$에서 소성한 결과 가장 우수한 유전특성$(\epsilon_r=44.92,\;Q{\times}f_0=5567)$을 나타내었다.

  • PDF

The Effects of Li-La-Ti-O Coating on the Properties of Li[Ni0.3Co0.4Mn0.3]O2 Cathode Material (Li[Ni0.3Co0.4Mn0.3]O2 양극물질의 Li-La-Ti-O코팅 효과)

  • Lee, Hye-Jin;Yun, Su-Hyun;Park, Bo-Gun;Ryu, Jea-Hyeok;Kim, Kwan-Su;Kim, Seuk-Buom;Park, Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.890-896
    • /
    • 2009
  • Li(Ni, Co, Mn)$O_2$ has been known as one of the most promising cathode materials for lithium secondary batteries. However, it has some problems to overcome for commercialization such as inferior rate capability and unstable thermal stability. In order to address these problems, surface modification of cathode materials by coating has been investigated. In the coating techniques, selection of coating material is a key factor of obtaining enhanced properties of cathode materials. In this work, we introduced solid electrolyte (Li-La-Ti-O) as a coating material on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Specially, we focused on a rate performance of Li-La-Ti-O coated $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode. Both bare and Li-La-Ti-O 2 wt.% coated sample showed similar discharge capacity at 0.5C rate. However, as the increase of charge-discharge rate to 3C, the coated samples displayed better discharge capacity and cyclic performance than those of bare sample.

A study on the development of thin solid state batteries (박막 고체전지 개발에 관한 연구)

  • 권혁상;이홍로
    • Journal of Surface Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.215-221
    • /
    • 1992
  • This research is aimed at developing(110) preferred TiS2 cathode films and glass typed solid electro-lytes which have high ionic migrations and low electron conductivities for thin secondary solid batteries. To obtain preferred oriented TiS2 thin films on a substrate by CVD method using TiCl4 and H2S gases three factors of heating temperature, inner pressure of furnace and TiCl4/H2S gas mole fraction were ex-amined systematically. To obtain solid films of Li2O-B2O3-SiO2 electrolytes by r.f. sputtering for thin proto-type batteries of Li/Li2O-B2O3-SiO2TiS2, sputtering conditions were examined. TiS2 cathode films showed columnar structure, namely c axis oriented parallely. At low pressure of reaction chamber and low heating temperature, surface of smooth TiS2 films couldd be obtained. Ionic conductivity of Li2O-B2O3-SiO2 films manufactured by r.f. magnetron sputtering were 3$\times$10-7$\Omega$-1cm-1 and electron conductivities were 10-11$\Omega$-1cm-1. Open cell voltage of thin lithium batteries were 2.32V with a designed prototype cell.

  • PDF

Research on Microstructure and Properties of TiN, (Ti, Al)N and TiN/(Ti, Al)N Multilayer Coatings

  • Wang, She Quan;Chen, Li;Yin, Fei;Jia, Li
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.658-659
    • /
    • 2006
  • Magnetron sputtered TiN, (Ti, Al)N and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates have been characterized by using electron probe microanalysis (EPMA), X-ray diffraction (XRD), scanning electron spectroscopy (SEM), nanoindentation, scratcher and cutting tests. Results show that TiN coating is bell mouth columnar structures, (Ti, Al)N coating is straight columnar structures and the modulation structure has been formed in the TiN/(Ti, Al)N multilayer coating. TiN/(Ti, Al)N multilayer coating exhibited higher hardness, better adhesion with substrate and excellent cutting performance compared with TiN and (Ti, Al)N coating.

  • PDF

TiN Anode for Electrolytic Reduction of UO2 in Pyroprocessing (TiN 양극을 이용한 파이로프로세싱 UO2 전해환원)

  • Kim, Sung-Wook;Choi, Eun-Young;Park, Wooshin;Im, Hun Suk;Hur, Jin-Mok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.229-233
    • /
    • 2015
  • Developing novel anode materials to replace the Pt anode currently used in electrolytic reduction is an important issue on pyroprocessing. In this study, the electrochemical behavior of TiN was investigated as the conductive ceramic anode which evolves O2 gas during the reaction. The feasibility and stability of the TiN anode was examined during the electrolytic reduction of UO2. The TiN anode could electrochemically convert UO2 to metallic U in a LiCl–Li2O molten salt electrolyte. No oxidation of TiN was observed during the reaction; however, the formation of voids in the bulk section appeared to limit the lifetime of the TiN anode.

Variation of AC Impedance of the $TiS_2$ Composite/SPE/Li Cell with Cycling ($TiS_2$ Composite/SPE/Li Cell의 충방전에 따른 AC 임피던스의 변화)

  • Kim, J.U.;Gu, H.B.;Moon, S.I.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1034-1038
    • /
    • 1995
  • The purpose of this study is to research and develop $TiS_2$ composite cathode for lithium polymer battery(LPB). $TiS_2$ electrode represent a class of insertion positive electrode used in Li secondary batteries. In this study, we investigated preparation of $TiS_2$ composite cathode and AC impedance response of $TiS_2$ composite/SPE/Li cells as a function of state of charge(SOC) and cycling. The resistance of B type cell using $TiS_2PEO_8LiClO_4PC_5EC_5$ composite cathode was lower than that of A type cell using $TiS_2PEO$ composite cathode. The cell resistance of B type cell is high for the first few percent discharge, decreases for midium discharge and then increases again toward the end of discharge. We believe the magnitude of the cell resistance is dominated by passivation layer impedance and small cathode resistance. AC impedance results indicate that the cell internal resistance increase with cycling, and this is attributed to change of passivation layer impedance with cycling. The passivation layer resistance($R_f$) of B type cell decreases for the 2nd cycling and then increases again with cycling. Redox coulombic efficiency of B type cell was about 141% at 1st cycle and 100% at 12th cycle. Also, $TiS_2$ specific capacity was 115 mAh/g at 12 cycle.

  • PDF

Dielectric Properties and Microstructure Observation of Complex Perovskite (1-x)$(Li_{1/2}Sm_{1/2})TiO_3-x (Na_{1/2}Sm_{1/2})TiO_3$(LNST) system [1] (복합 페로브스카이트 (1-x)$(Li_{1/2}Sm_{1/2})TiO_3-x (Na_{1/2}Sm_{1/2})TiO_3$(LNST) system의 유전특성 및 미세구조 관찰 [1])

  • Son, Jin-Ok;Lee, Hwack-Joo;Nahm, Sahn
    • Applied Microscopy
    • /
    • v.34 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • The microwave dielectric properties and microstructures of the Complex Perovskite (1-x)$(Li_{1/2}Sm_{1/2})TiO_3-x (Na_{1/2}Sm_{1/2})TiO_3$(LNST) system were investigated using the X-ray diffraction (XRD) and scanning electron microscopy (SEM). LNST had not only the antiphase tilting of oxygen octahedron but also the inphase tilting of oxygen octahedron and the antiparallel shift of cations. Also, when $0.0{\leq}x{\leq}0.4$, LNST had the vacancy ordering of A-sites because of the evaporation of Li ions. From the observation of the microstructure, abnormal grain growth phenomena were observed over the whole range of x. The temperature coefficient of resonant frequency ($T_{cf}$) of the $({Li_{1/2}}^{+1}{Sm_{1/2}}^{+3})TiO_3$(LST) system has a large negative value ($-220ppm/^{\circ}C$) but the $({Na_{1/2}}^{+1}{Sm_{1/2}}^{+3})TiO_3$(NST) system which substituted $Na^{+1}$ has a large positive value ($+173ppm/^{\circ}C$). The dielectric properties of ${\varepsilon}_r=103,\;Q*f_{0}=3,700GHz$ and $T_{cf}=+50ppm/^{\circ}C$ at 4GHz were obtained when x =0.4.

Effective of $Li_2CO_3$ and ZnBO for low temperature sintered $(Ba_{0.5},Sr_{0.5})TiO_3$ ceramics (BST 세라믹 저온소결에 $Li_2CO_3$와 ZnBO가 미치는 영향)

  • Kim, Se-Ho;You, Hee-Wook;Koo, Sang-Mo;Ha, Jae-Geun;Lee, Young-Hie;Koh, Jung-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.297-297
    • /
    • 2007
  • The $(B_{0.5},Sr_{0.5})TiO_3$ ceramics, which added with low sintering materials $Li_2CO_3$ and ZnBO, was investigated for LTCC(low temperature co-fired ceramic) applications. To compare sintering temperature of $(B_{0.5},Sr_{0.5})TiO_3$ respectively, we added 1, 2, 3, 4, and 5wt% of $Li_2CO_3$ and ZnBO to $(B_{0.5},Sr_{0.5})TiO_3$. For confirming the sintering temperature, the respective specimens were sintered from $750^{\circ}C$ to $1200^{\circ}C$ by $50^{\circ}C$. The case of $Li_2CO_3$ greatly lowered the sintering temperature of $(B_{0.5},Sr_{0.5})TiO_3$ ($1350^{\circ}C$) below $900^{\circ}C$. The addition of ZnBO improved the loss tangent of $(B_{0.5},Sr_{0.5})TiO_3$. The crystalline structure of $LiCO_3$ doped $(B_{0.5},Sr_{0.5})TiO_3$ and ZnBO doped $(B_{0.5},Sr_{0.5})TiO_3$ was analyzed with the X-ray diffraction (XRD) analysis. The dielectric permittivity and loss tangent of $Li_2CO_3$ doped BST and ZnBO doped BST were measured with the HP 4284A precision. From the electrical characterization, we respectively obtained the dielectric permittivity 1361, loss tangent $6.94{\times}10^{-3}$ at $Li_2CO_3$ doped $(B_{0.5},Sr_{0.5})TiO_3$ (3wt%) and the dielectric constant 1180, loss tangent $3.70{\times}10^{-3}$ at ZnBO doped $(B_{0.5},Sr_{0.5})TiO_3$(5wt%).

  • PDF

Electrochemical Characteristic Change of Cr-doped Li4Ti5O12 due to Different Water Solubility of Dopant Precursors (도판트 프리커서의 용해도 차이에 의한 Cr-doped Li4Ti5O12의 전기화학적 특성 변화)

  • Yun, Su-Won;Song, Hannah;Kim, Yong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • $Li_4Ti_5O_{12}$ (LTO) have attracted much attention of researchers in the field of energy storage, because of their excellent stability for electric vehicle application. A main drawback of LTO is however their insulating nature due to the wide bandgap, which should be addressed to enhance the battery performance. In this study, we investigated the effect of water solubility of dopant precursor on the electrochemical characteristics of conducting LTO prepared by doping with $Cr^{3+}$ ions with the well-known wet-mixing method. The solubility of dopant precursor directly affected the morphology and the phase of doped LTO, and therefore their battery performance. In the case of employing the most soluble dopant precursor, $Cr(NO_3)_2$, the doped LTO demonstrated a markedly enhanced discharge capacity at high C-rate (130mAh/g @ 10C), which is about 2 times higher value than that of bare LTO.