• Title/Summary/Keyword: Li-S Battery

Search Result 253, Processing Time 0.024 seconds

The Preparation Characteristic of Dimercaptan-Polyphenylenediamine Cathodes for Lithium Battery (리튬전지용 Dimercaptan-Polyphenylenediamine 정극의 제막특성)

  • Park, Soo-Gil;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.114-121
    • /
    • 1997
  • The positive active material for polymer film-battery was prepared by using polyphenlenediamine(PPD) synthesized in our lab. and 2,5-dimercapto-1,3,4-thiadiazole(DMcT) with various mixture ratio. The transference measurement of surface morphology and thermal stability of the prepared composite film was carried out by using SEM and TGA, respectively. Electrochemical property and electrical conductivity of the composite film were also measured by using cyclic voltammetry and four-probe method in dry box, respectively. The thermal stability of prepared composite film was up to $200^{\circ}C$. The electrical conductivity of the composite film increased and showed the highest value(about 3 S/cm) when doped at 0.4% $LiCIO_4$ solution. And we could confirm that DMcT was effective on reactivation of PPD through cyclic voltammogram.

  • PDF

Design and Implementation of Eco-friendly Power Supply System for Moveable-weir Using PV Module and Li-ion Battery (태양광모듈과 리튬이온전지를 이용한 가동보용 친환경 전원공급장치의 설계 및 구현)

  • Kang, Min-Kwan;Choi, Sung-Sik;Nam, Yang-Hyeon;Lee, Hu-Dong;Park, Ji-Hyun;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.186-193
    • /
    • 2018
  • Generally, it is difficult to operate moveable-weir due to the expensive cost of the facility management and manpower consumption. Also, when it is installed in a remote area, there is a problem that the cost of connection for power system increases as well as the operating cost. Therefore, this paper proposes an optimal design algorithm to replace an existing power system with an Eco-friendly power supply system for movable-weir using PCS, PV module and lithium-ion battery. Also, this paper proposes a modeling method of environment-friendly power supply system for a movable-weir based on the PSCAD/EMTDC S/W and implements 5[kW] prototype environment-friendly power supply system. As a result of the performance test using the S/W modeling and the prototype system, it is confirmed that the proposed system has stable characteristics in the independent operation mode and the interconnection mode.

Effect of Lithium Contents and Applied Pressure on Discharge Characteristics of Single Cell with Lithium Anode for Thermal Batteries (리튬 함량 및 단위 셀 압력이 열전지용 리튬 음극의 방전 성능에 미치는 영향)

  • Im, Chae-Nam;Ahn, Tae-Young;Yu, Hye-Ryeon;Ha, Sang Hyeon;Yeo, Jae Seong;Cho, Jang-Hyeon;Yoon, Hyun-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 2019
  • Lithium anodes (13, 15, 17, and 20 wt% Li) were fabricated by mixing molten lithium and iron powder, which was used as a binder to hold the molten lithium, at about $500^{\circ}C$ (discharge temp.). In this study, the effect of applied pressure and lithium content on the discharge properties of a thermal battery's single cell was investigated. A single cell using a Li anode with a lithium content of less than 15 wt% presented reliable performance without any abrupt voltage drop resulting from molten lithium leakage under an applied pressure of less than $6kgf/cm^2$. Furthermore, it was confirmed that even when the solid electrolyte is thinner, the Li anode of the single cell normally discharges well without a deterioration in performance. The Li anode of the single cell presented a significantly improved open-circuit voltage of 2.06 V, compared to that of a Li-Si anode (1.93 V). The cut-off voltage and specific capacity were 1.83 V and $1,380As\;g^{-1}$ (Li anode), and 1.72 V and $1,364As\;g^{-1}$ (Li-Si anode). Additionally, the Li anode exhibited a stable and flat discharge curve until 1.83 V because of the absence of phase change phenomena of Li metal and a subsequent rapid voltage drop below 1.83 V due to the complete depletion of Li at the end state of discharge. On the other hand, the voltage of the Li-Si anode cell decreased in steps, $1.93V{\rightarrow}1.72V(Li_{13}Si_4{\rightarrow}Li_7Si_3){\rightarrow}1.65V(Li_7Si_3{\rightarrow}Li_{12}Si_7)$, according to the Li-Si phase changes during the discharge reaction. The energy density of the Li anode cell was $807.1Wh\;l^{-1}$, which was about 50% higher than that of the Li-Si cell ($522.2Wh\;l^{-1}$).

Analysis of Electricity Cost Saving Effect by the Optimal load shifting Operation with 1MWh Redox Flow Battery (1MWh급 레독스흐름전지의 부하이전용 최적운전에 따른 전기요금 절감효과 분석)

  • Baek, Ja-Hyun;Ko, Eun-Young;Kang, Tae-Hyuk;Lee, Han-Sang;Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1151-1160
    • /
    • 2016
  • In recent years, the energy storage systems such as LiB, NaS, RFB(Redox-Flow Battery), Super- capacitor, pumped hydro storage, flywheel, CAES(Compressed Air Energy Storage) and so on have received great attention as practical solutions for the power supply problems. They can be used for various purpose of peak shaving, load leveling and frequency regulation, according to the characteristics of each ESS(energy storage system). This paper will focus at 1 MWh RFB system, which is being developed through the original technology project of energy material. The output of ESS is mainly characterized by C-rate, which means that the total rated capacity of battery will be delivered in 1 hour. And it is a very important factor in the ESS operation scheduling. There can be several options according to the operation intervals 15, 30 and 60minutes. The operation scheduling is based on the optimization to minimize the daily electricity cost. This paper analyzes the cost-saving effects by the each operating time-interval in case that the RFB ESS is optimally scheduled for peak shaving and load leveling.

Dependence of Thermal and Electrochemical Properties of ceramic Coated Separators on the Ceramic Particle Size (알루미나 크기에 따른 세라믹 코팅 분리막의 열적 특성 및 전기화학적 특성)

  • Park, Sun Min;Yu, Ho Jun;Kim, Kwang Hyun;Kang, Yun Chan;Cho, Won Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.27-33
    • /
    • 2017
  • Conventional lithium ion batteries suffer from notorious safety issues caused by inevitable lithium dendrite formation and proliferation during over/fast charging processes. The lithium dendrites or mechanical damage on the separator induce internal short circuit in LiB that generates extensive amount of heat within contacted electrode surfaces through the separator. During this heat generation, conventional polyolefin separators shrinks dramatically, and increasing short circuit pathway, that causes the battery to explode. To overcome this serious issue, ceramic coated separators are developed in commercial LiB to enhance thermal and mechanical stability. In this paper, various size(IL = 488.5 nm, I = 538.7 nm, S = 810.3 nm, D = 1533.3 nm) of $Al_2O_3$ particles are coated using styrene-butadiene rubber(SBR) / carboxymethyl cellulose(CMC) binder on PE separator to investigate its thermal stability and electrochemical effect on LiB coin cell with NCM cathode and Li metal anode.

Preparation of Poly(propylene) Membrane Supported Gel Electrolyte Membranes for Rechargeable Lithium Ion Batteries through Thermal Polymerization of Di(ethylene glycol) Dimethacrylate (Di(ethylene glycol) Dimethacrylate의 열중합에 의한 Poly(propylene) 분리막으로 지지한 리튬이온 이차전지의 겔 전해질막 제조)

  • Yun, Mi-Hye;Kwon, So-Young;Jung, Yoo-Young;Cho, Doo-Hyun;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.259-266
    • /
    • 2010
  • Porous poly(propylene) supported gel polymer electrolytes (GPE) were synthesized by thermal polymerization of DEGDMA [Di(ethylene glycol) dimethacrylate] in electrolyte solutions (1 M solution of $LiPF_6$ in EC/DEC 1 : 1 mixture) at $70^{\circ}C$. AC impedance spectroscopy and cyclic voltammetry were used to evaluate its ionic conductivity and electrochemical stability window of the GPE membranes. Lithium ion battery (LIB) cells were also fabricated with $LiNi_{0.8}Co_{0.2}O_2$/graphite and GPE membranes via thermal polymerization process. Through the thermal polymerization, self sustaining GPE membranes with sufficient ionic conductivities (over $10^{-3}\;S/cm$) and electrochemical stabilities. The LIB cell with 5% monomer showed the best rate-capability and cycleability.

Preparation and Characterization of Ta-substituted Li7La3Zr2-xO12 Garnet Solid Electrolyte by Sol-Gel Processing

  • Yoon, Sang A;Oh, Nu Ri;Yoo, Ae Ri;Lee, Hee Gyun;Lee, Hee Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.278-284
    • /
    • 2017
  • In this work, Ta-substituted $Li_7La_3Zr_{2-x}O_{12}$ (LLZTO) powder and pellets with garnet cubic structure were fabricated and characterized by modified and optimized sol-gel synthesis. Ta-substituted LLZO powder with the smallest grain size and pure cubic structure with little pyrochlore phase was obtained by synthesis method in which Li and La sources in propanol solvent were mixed together with Zr and Ta sources in 2-methoxy ethanol. The LLZTO pellets made with the prepared powder showed cubic garnet structure for all conditions when the amount of Li addition was varied from 6.2 to 7.4 mol. All the X-ray peaks of the pyrochlore phase disappeared when the Li addition was increased above 7.0 mol. When the final sintering temperature was varied, the LLZTO pellet had a pyrochlore-mixed cubic phase above $1000^{\circ}C$. However, the surface morphology became much denser when the final sintering temperature was increased. The sol-gel-driven LLZTO pellet with a sintering temperature of $1100^{\circ}C$ showed a lithium ionic conductivity of 0.21 mS/cm when Au was adopted as electrode material for the blocking capacitor. The results of this study suggest that modified sol-gel synthesis is the optimum method to obtain cubic phase of LLZTO powder for highly dense and conductive solid electrolyte ceramics.

Electrochemical Behavior of Lithium-Iron Oxide Electrode and Measurement of Chemical Diffusion Coefficient of Lithium (리튬-철계 산화물 전극의 전기화학 거동 및 리튬의 화학확산 계수 측정)

  • Lee Joung-Jun;Chong Won-Jung;Ju Jeh-Beck;Sohn Tai-Won;Cho Won-Il;Cho Byung-Won;Kim Hyung-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.139-145
    • /
    • 2001
  • Various compositions of iron oxide based materials as a cathode of lithium secondary battery have been fabricated and tested with electrochemical method. A layered form of $LiFeO_2$ was synthesized by mixing and heating the initial materials of $FeCl_3\;6H_2O,\;LiOH$ and NaOH at low temperature. The effect of changing the precursors composition was investigated. As a result, when increasing the additive amount of NaOH, the capacity of the electrode is decreased but the performance and declining rate of capacity became smaller. $LiFeO_2$ synthesized with the weight ratio of $NaOH/FeCl_3/LiOH,\;2/1/7$ showed the largest capacity, but the discharging efficiency was sharply decreased after 30 cycles. Charge-discharge tests of lithium cells with $LiFeO_2$ cathode having the layer structure were performed. This cell showed the reversibility in the range of 1.5-4.5V of cell voltage. By using CPR method, chemical diffusion coefficients were measured in 1M $LiPF_6/EC/DEC$ solution. The value of chemical diffusion coefficient decreased with increasing the lithium content x, In 0.5$10^{-11}^cm^2/s$.

Design of 9 kJ/s High Voltage LiPo Battery Based 2-stage Capacitor Charger (9 kJ/s 배터리 기반 2단 충전 고전압 충전기 설계)

  • Cho, Chan-Gi;Jia, ZiYi;Park, Su-Mi;Jo, Hyun-Bin;Lee, Seung-Hee;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.45-47
    • /
    • 2018
  • 본 논문은 High Altitude Electromagnetic Pulse (HEMP) 응용 분야에 적용되는 리튬 이온 베터리를 이용한 커패시터 충전전원 장치에 관하여 다룬다. 기존에 제안하였던 5.4 kJ/s 고전압 커패시터 충전기를 9 kJ/s 로 용량을 늘렸고, 고전압 커패시터 충전기 후단에 공진 충전 회로를 도입하여 2단 충전 구조로 펄스 방전 시 발생할 수 있는 역전압과 reflecting pulses로 부터 커패시터 충전 전원 장치를 보호한다. 제안하는 충전기의 성능은 시뮬레이션 및 기초 부하 실험을 통해 확인되었다.

  • PDF

Effect of pH on the Synthesis of $LiCoO_2$ with Malonic Acid and Its Charge/Discharge Behavior for a Lithium Secondary Battery

  • Kim, Do Hun;Jeong, Yu Deok;Kim, Sang Pil;Sim, Un Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.11
    • /
    • pp.1125-1132
    • /
    • 2000
  • The pH effect of the precursor solution on the preparation of $LiCoO_2$ by a solution phase reaction containing malonic acid was carried out. Layered $LiCoO_2$ powders were obtained with the precursors prepared at the different pHs (4, 7, and 9) and heat-treated at $700^{\circ}C(LiCoO_2-700)$ or $850^{\circ}C(LiCoO_2-850)$ in air. pHs of the media for precursor synthesis affects the charge/discharge and electrochemical properties of the $LiCoO_2electrodes.$ Upon irrespective of pH of the precursor media, X-ray diffraction spectra recorded for $LiCoO_2-850$ powder showed higher peak intensity ratio of I(003)/I(104) than that of $LiCoO_2-700$, since the better crystallization of the former crystallized better. However, $LiCoO_2$ synthesized at pH 4 displayed an abnormal higher intensity ratio of I(003)/I(104) than those synthesized at pH 7 and 9. The surface morphology of the $LiCoO_2-850$ powders was rougher and more irregular than that of $LiCoO_2-700$ made from the precursor synthesized at pH 7 and 9. The $LiCoO_2electrodes$ prepared with the precursors synthesized at pH 7 and 9 showed a better electrochemical and charge/discharge characteristics. From the AC impedance spectroscopic experiments for the electrode made from the precursor prepared in pH 7, the chemical diffusivity of Li ions (DLi+) in $Li0.58CoO_2determined$ was 2.7 ${\times}$10-8 $cm^2s-1$. A cell composed of the $LiCoO_2-700$ cathode prepared in pH 7 with Lithium metal anode reveals an initial discharge specific capacity of 119.8 mAhg-1 at a current density of 10.0 mAg-1 between 3.5 V and 4.3 V. The full-cell composed with $LiCoO_2-700$ cathode prepared in pH 7 and the Mesocarbon Pitch-based Carbon Fiber (MPCF) anode separated by a Cellgard 2400 membrane showed a good cycleability. In addition, it was operated over 100 charge/discharge cycles and displayed an average reversible capacity of nearly 130 mAhg-1.