• 제목/요약/키워드: Li-Polymer

검색결과 507건 처리시간 0.022초

리튬이온전지 실리콘계 음극 바인더 소재 개발 (Development of Binder Materials for Si-based Anode in Lithium-ion Batteries)

  • 윤지희;유정근
    • Composites Research
    • /
    • 제35권6호
    • /
    • pp.365-370
    • /
    • 2022
  • 전기자동차 및 E-모빌리티 시장이 급속히 성장함에 따라 리튬이온전지는 현재 가장 주목받는 기술 중 하나로 여겨지고 있다. 따라서 높은 용량 및 출력, 급속 충전 성능을 가지는 고에너지밀도 전극 개발이 매우 중요한 상황이다. 고에너지밀도 전극 구현을 위해서 음극의 경우 실리콘, 주석 등 고용량 활물질 소재에 대한 연구가 진행되고 있는 상황이다. 하지만 이러한 고용량 활물질 소재는 전지의 충방전 과정 시 발생하는 부피팽창이 전지의 성능을 저하시키는 주된 원인이 된다고 알려져 있다. 따라서 활물질의 부피팽창을 완화할 수 있는 바인더 소재 개발이 매우 중요한 상황이며, 기존 PVDF, CMC/SBR계 바인더 뿐만 아니라 수용성 고분자(polyacrylic acid, polyvinyl alcohol, aliginate 등)를 이용한 바인더 소재 개발 연구가 많이 보고되고 있다. 이처럼 앞으로 리튬이온전지의 고성능화를 위해서 바인더는 매우 중요한 기술이 되었으며, 본 논문에서는 리튬이온전지용 음극 바인더 소재의 연구 동향을 살펴보고자 한다.

신축성 리튬이온전지를 위한 DMSO 도핑 PEDOT:PSS 나노 섬유 집전체 (Stretchable Current Collector Composing of DMSO-dopped Nano PEDOT:PSS Fibers for Stretchable Li-ion Batteries)

  • 권오현;이지혜;김재광
    • 전기화학회지
    • /
    • 제24권4호
    • /
    • pp.93-99
    • /
    • 2021
  • 스트레처블 에너지 저장 장치 경량화를 위해 금속 집전체를 대체할 경량 물질 개발에 대한 관심이 높아지고 있다. 본 연구에서는 전도성 고분자인 PEDOT:PSS를 전기방사법으로 제조한 나노 섬유를 리튬이온전지용 집전체로 사용하였다. 나노 섬유는 도펀트인 DMSO를 사용해 향상된 전기 전도성을 나타냈으며, 신축성 평가결과로 부터 30% 이상의 신축률을 보여주었다. 또한, 나노 섬유 집전체를 사용함으로써 액체 전해질의 침투가 용이하며, 나노 섬유 네트워크를 통해 전자전도성을 높이는 효과를 나타났었다. DMSO 도핑 PEDOT:PSS@PAM 나노 섬유 필름 집전체를 사용한 리튬이온전지는 135mAh g-1의 높은 방전용량을 보여주었으며, 1000 사이클 이후 73.5%의 높은 용량 유지율을 나타내었다. 따라서, 전도성 나노 섬유의 우수한 전기화학적 안정성과 기계적 특성은 신축성 에너지 저장 장치의 경량 집전체로서의 활용이 가능함을 보여주었다.

Mechanical behaviour between adjacent cracks in CFRP plate reinforced RC slabs

  • Yuan, Xin;Bai, Hongyu;Sun, Chen;Li, Qinqing;Song, Yanfeng
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.375-391
    • /
    • 2022
  • This paper discussed and analyzed the interfacial stress distribution characteristic of adjacent cracks in Carbon Fiber Reinforced Polymer (CFRP) plate strengthened concrete slabs. One un-strengthened concrete test beam and four CFRP plate-strengthened concrete test beams were designed to carry out four-point flexural tests. The test data shows that the interfacial shear stress between the interface of CFRP plate and concrete can effectively reduce the crack shrinkage of the tensile concrete and reduces the width of crack. The maximum main crack flexural height in pure bending section of the strengthened specimen is smaller than that of the un-strengthened specimen, the CFRP plate improves the rigidity of specimens without brittle failure. The average ultimate bearing capacity of the CFRP-strengthened specimens was increased by 64.3% compared to that without CFRP-strengthen. This indicites that CFRP enhancement measures can effectively improve the ultimate bearing capacity and delay the occurrence of debonding damage. Based on the derivation of mechanical analysis model, the calculation formula of interfacial shear stress between adjacent cracks is proposed. The distributions characteristics of interfacial shear stress between certain crack widths were given. In the intermediate cracking region of pure bending sections, the length of the interfacial softening near the mid-span cracking position gradually increases as the load increases. The CFRP-concrete interface debonding capacity with the larger adjacent crack spacing is lower than that with the smaller adjacent crack spacing. The theoretical calculation results of interfacial bonding shear stress between adjacent cracks have good agreement with the experimental results. The interfacial debonding failure between adjacent cracks in the intermediate cracking region was mainly caused by the root of the main crack. The larger the spacing between adjacent cracks exists, the easier the interfacial debonding failure occurs.

Increasing the attractiveness of physical education training with the involvement of nanotechnology

  • Jinyan Ge;Yuxin Hong;Rongtian Zeng;Yunbin Li;Mostafa Habibi
    • Advances in concrete construction
    • /
    • 제16권6호
    • /
    • pp.291-302
    • /
    • 2023
  • As the first part of the body that strikes the ground during running, sports shoes are especially important for improving performance and reducing injuries. The use of new nanotechnology materials in the shoe's sole that can affect the movement angle of the foot and the ground reaction forces during running has not been reported yet. It is important to consider the material of the sole of the shoe since it determines the long-term performance of sports shoes, including their comfort while walking, running, and jumping. Running performance can be improved by polymer foam that provides good support with low energy dissipation (low energy dissipation). Running shoes have a midsole made of ethylene propylene copolymer (EPP) foam. The mechanical properties of EPP foam are, however, low. To improve the mechanical performance of EPP, conventional mineral fillers are commonly used, but these fillers sacrifice energy return. In this study, to improve the magnificence of physical education training with nanotechnology, carbon nanotubes (CNTs) derived from recycled plastics were prepared by catalytic chemical vapor deposition and used as nucleating and reinforcing agents. As a result of the results, the physical, mechanical, and dynamic response properties of EPP foam combined with CNT and zinc oxide nanoparticles were significantly improved. When CNT was added to the nanocomposites with a weight percentage of less than 0.5 wt%, the wear resistance, physical properties, dynamic stiffness, compressive strength, and rebound properties of EPP foams were significantly improved.

A Feasibility Study for a Stratospheric Long-endurance Hybrid Unmanned Aerial Vehicle using a Regenerative Fuel Cell System

  • Cho, Seong-Hyun;Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권1호
    • /
    • pp.41-51
    • /
    • 2016
  • In the stratosphere, the air is stable and a photovoltaic (PV) system can produce more solar energy compared to in the atmosphere. If unmanned aerial vehicles (UAVs) fly in the stratosphere, the flight stability and efficiency of the mission are improved. On the other hand, the weakened lift force of the UAV due to the rarefied atmosphere can require more power for lift according to the weight and/or wing area of the UAV. To solve this problem, it is necessary to minimize the weight of the aircraft and improve the performance of the power system. A regenerative fuel cell (RFC) consisting of a fuel cell (FC) and water electrolysis (WE) combined PV power system has been investigated as a good alterative because of its higher specific energy. The WE system produces hydrogen and oxygen, providing extra energy beyond the energy generated by the PV system in the daytime, and then saves the gases in tanks. The FC system supplies the required power to the UAV at night, so the additional fuel supply to the UAV is not needed anymore. The specific energy of RFC systems is higher than that of Li-ion battery systems, so they have less weight than batteries that supply the same energy to the UAV. In this paper, for a stratospheric long-endurance hybrid UAV based on an RFC system, three major design factors (UAV weight, wing area and performance of WE) affecting the ability of long-term flight were determined and a simulation-based feasibility study was performed. The effects of the three design factors were analyzed as the flight time increased, and acceptable values of the factors for long endurance were found. As a result, the long-endurance of the target UAV was possible when the values were under 350 kg, above 150 m2 and under 80 kWh/kg H2.

Synthesis and Photovoltaic Properties of Alternating Conjugated Polymers Derived from Thiophene-Benzothiadiazole Block and Fluorene/Indenofluorene Units

  • Li, Jianfeng;Tong, Junfeng;Zhang, Peng;Yang, Chunyan;Chen, Dejia;Zhu, Yuancheng;Xia, Yangjun;Fan, Duowang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.505-512
    • /
    • 2014
  • A new donor-accepter-donor-accepter-donor (D-A-D-A-D) type 2,1,3-benzothiadiazole-thiophene-based acceptor unit 2,5-di(4-(5-bromo-4-octylthiophen-2-yl)-2,1,3-benzothiadiazol-7-yl)thiophene ($DTBTTBr_2$) was synthesized. Copolymerized with fluorene and indeno[1,2-b]fluorene electron-rich moieties, two alternating narrow band gap (NBG) copolymers PF-DTBTT and PIF-DTBTT were prepared. And two copolymers exhibit broad and strong absorption in the range of 300-700 nm with optical band gap of about 1.75 eV. The highest occupied molecular orbital (HOMO) energy levels vary between -5.43 and -5.52 eV and the lowest unoccupied molecular orbital (LUMO) energy levels range from -3.64 to -3.77 eV. Potential applications of the copolymers as electron donor material and $PC_{71}BM$ ([6,6]-phenyl-$C_{71}$ butyric acid methyl ester) as electron acceptors were investigated for photovoltaic solar cells (PSCs). Photovoltaic performances based on the blend of PF-DTBTT/$PC_{71}BM$ (w:w; 1:2) and PIF-DTBTT/$PC_{71}BM$ (w:w; 1:2) with devices configuration as ITO/PEDOT: PSS/blend/Ca/Al, show an incident photon-to-current conversion efficiency (IPCE) of 2.34% and 2.56% with the open circuit voltage ($V_{oc}$) of 0.87 V and 0.90 V, short circuit current density ($J_{sc}$) of $6.02mA/cm^2$ and $6.12mA/cm^2$ under an AM1.5 simulator ($100mA/cm^2$). The photocurrent responses exhibit the onset wavelength extending up to 720 nm. These results indicate that the resulted narrow band gap copolymers are viable electron donor materials for polymer solar cells.

Phytochemical analysis of Panax species: a review

  • Yang, Yuangui;Ju, Zhengcai;Yang, Yingbo;Zhang, Yanhai;Yang, Li;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.1-21
    • /
    • 2021
  • Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.