• 제목/요약/키워드: Li-Polymer

검색결과 508건 처리시간 0.035초

REMOVAL OF DISSOLVED OXYGEN USING PVDF HOLLOW FIBER MEMBRANE CONTACTOR

  • Lee, Ki-Sub;Park, You-In;Yeon, Sun-Hwa;Sung, Kyung-Soo;Rhim, Ji-Won;Lee, Kew-Ho
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 The 4th Korea-Italy Workshop
    • /
    • pp.133-135
    • /
    • 2003
  • The removal of dissolved oxygen(DO) from water was studied using a poly(vinyliene fluoride)(PVDF) hollow fiber membrane contactor(HFMC) with the vacuum degassing process(VDP), Asymmetric porous PVDF hollow fiber membranes (HFM) for membrane contactor were prepared by a wet phase inversion method. In spinning of these PVDF hollow fibers, dimethy lacetamide (DMAc), LiCl and pure water were used as a solvent, a pore-forming additive and internal/external coagulant, respectively. The characteristics of the structure(pore size, porosity etc.) of the prepared PVDF HFMs as a function of concentration of pore-forming additive in polymer dope solution were studied. Also, the removal efficiency of DO from water according to flow rates of water, using PVDF HFMC with VDP, was studied. The performance of the asymmetric porous PVDF HFMC and a symmetric porous PP HFMC commercialized were compared. As a result, the asymmetric porous PVDF HFMC showed higher removal efficiency of DO than that of a symmetric porous PP HFMC.

  • PDF

RBSN 방법을 사용한 콘크리트에 삽입된 FRP rod의 Pull-out거동의 3D 수치 Simulation (3D Numerical Simulation of Pullout Behavior of FRP Embedded in Concrete using RBSN Method)

  • 김장호;이정;키엣;홍종석;김윤호;이경민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.365-368
    • /
    • 2006
  • RBSN Method, Rigid-Body-Spring Network Method, is a structural analysis method that overcomes the problems faced in FEM analysis of concrete or crack forming structures. In RBSN, irregular lattices are used to model structural components consisting of bulk material, curvilinear reinforcements, and their interfaces. Because reinforcements and their interfaces in the bulk material are freely positioned, meshing is irrespective of the geometry of the representing bulk material. In this paper, RBSN method of 3D is applied in simulating the pull-out test of FRP (Fiber Reinforced Polymer) embedded in concrete. The comparison of analysis results to experimental results shows that RBSN method simulates the shear-slip behavior very precisely. From the analysis results, 3D RBSN method is proven to be an effective and accurate analysis method for concrete structural analysis. Also, the results show that RBSN method can be a potential analysis method for concrete structures that can replace the current FEM analysis.

  • PDF

Effects of comonomer with carboxylic group on stabilization of high molecular weight polyacrylonitrile nanofibrous copolymers

  • Lei, Danyun;Devarayan, Kesavan;Li, Xiang-Dan;Choi, Woong-Ki;Seo, Min-Kang;Kim, Byoung-Suhk
    • Carbon letters
    • /
    • 제15권4호
    • /
    • pp.290-294
    • /
    • 2014
  • New precursors, poly(acrylonitrile-co-crotonic acid) (poly(AN-CA)) and poly(acrylonitrile-co-itaconic acid-co-crotonic acid) (poly(AN-IA-CA)) copolymers, for the preparation of carbon fibers, were explored in this study. The effects of comonomers with acidic groups, such as crotonic acid (CA) and/or itaconic acid (IA), on the stabilization of nanofibrous polyacrylonitrile (PAN) copolymers were studied. The extent of stabilization, evaluated by Fourier transform infrared spectroscopy, revealed that the CA comonomer could retard/control the stabilization rate of PAN, in contrast to the IA comonomer, which accelerated the stabilization process. Moreover, the synthesized PAN copolymers containing CA possessed higher Mv than those of the IA copolymers and also showed outstanding dimension stability of nanofibers during the stabilization, which may be a useful property for improving the dimensional stability of polymer composites during manufacturing.

Behavior of CFST columns with inner CFRP tubeunder biaxial eccentric loading

  • Li, Guochang;Yang, Zhijain;Lang, Yan;Fang, Chen
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1487-1505
    • /
    • 2016
  • This paper presents the results of an experimental study on the behavior of a new type of composite FRP-concrete-steel member subjected to bi-axial eccentric loading. This new type of composite member is in the form of concrete-filled square steel tube slender columns with inner CFRP (carbon fiber-reinforced polymer) circular tube, composed of an inner CFRP tube and an outer steel tube with concrete filled in the two tubes. Tests on twenty-six specimens of high strength concrete-filled square steel tube columns with inner CFRP circular tube columns (HCFST-CFRP) were carried out. The parameters changed in the experiments include the slenderness ratio, eccentric ratio, concrete strength, steel ratio and CFRP ratio. The experimental results showed that the failure mode of HCFST-CFRP was similar to that of HCFST, and the specimens failed by local buckling because of the increase of lateral deflection. The steel tube and the CFRP worked together well before failure under bi-axial eccentric loading. Ductility of HCFST-CFRP was better than that of HCFST. The ultimate bearing capacity of test specimen was calculated with simplified formula, which agreed well with test results, and the simplified formula can be used to calculate the bearing capacity of HCFSTF within the parameters of this test.

Investigation on Structure and Properties of a Novel Designed Peptide with Half-Sequence Ionic Complement

  • Ruan, Li-Ping;Luo, Han-Lin;Zhang, Hang-Yu;Zhao, Xiaojun
    • Macromolecular Research
    • /
    • 제17권8호
    • /
    • pp.597-602
    • /
    • 2009
  • Although the existing design principle of full-sequence ionic complement is convenient for the development of peptides, it greatly constrains the exploration of peptides with other possible assembly mechanisms and different yet essential functions. Herein, a novel designed half-sequence ionic complementary peptide (referred to as P9), AC-Pro-Ser-Phe-Asn-Phe-Lys-Phe-Glu-Pro-$NH_2$, is reported. When transferred from pure water to sodium chloride solution, P9 underwent a dramatic morphological transformation from globular aggregations to nanofibers. Moreover, the rheological experiment showed that the P9 could form a hydrogel with a storage modulus of about 30 Pa even at very low peptide concentration (0.5% (wt/vol)). The P9 hydrogel formed in salt solution could recover in a period of about 1,800 sec, which is faster than that in the pure water. The data suggestcd that the half-sequence, ionic complementary peptide might be worthy of further research for its special properties.

Investigation on Chain Transfer Reaction of Benzene Sulfonyl Chloride in Styrene Radical Polymerization

  • Li, Cuiping;Fu, Zhifeng;Shi, Yan
    • Macromolecular Research
    • /
    • 제17권8호
    • /
    • pp.557-562
    • /
    • 2009
  • The free radical polymerization of styrene was initiated with azobis(isobutyronitrile) in the presence of benzene sulfonyl chloride. Analysis of the terminal structures of the obtained polystyrene with $^1H$ NMR spectroscopy revealed the presence of a phenyl sulfonyl group at the ${\alpha}$-end and a chlorine atom at the ${\omega}$-end of each polystyrene chain. The terminal chlorine atom in the polystyrene chains was further confirmed through atom transfer radical polymerization (ATRP) of styrene and methyl acrylate using the obtained polystyrenes as macroinitiators and CuCl/2,2'-bipyridine as the catalyst system. GPC traces of the products obtained in ATRP at different reaction times were clearly shifted to higher molecular weight direction, indicating that nearly all the macroinitiator chains initiated ATRP of the second monomers. In addition, the number-average molecular weights of the polystyrenes increased directly proportional to the monomer conversions, and agreed well with the theoretical ones.

Synthesis and Characterization of Copoly(amide-imide) Derivatives and Ultrafiltration Membrane Performances I - Preparation of Copoly(amide-imide)s by One-step Method -

  • Jeon, Jong-young;Shin, Bong-Seob
    • Korean Membrane Journal
    • /
    • 제3권1호
    • /
    • pp.9-16
    • /
    • 2001
  • The diamide-diamine having carboxylic acid was prepared by direct condensation of 1,2,4-benzenetricarboxylic acid with bits[4- (3-aminophenoxy ) phenyl] sulfone and bits(4-aminouhenyl)-1,4- diisopropylbenzene in medium consisting of triphenylphosphite, LiCl, and N-methyl-2-pyrrolidone. Copoly (amide-imide) derivatives with high molecular weight could be synthesized by one-step polycondensation of prepared diamide-diamine having carboxylic acid and various dianhydride compounds. Depending on the chemical structure and composition of polymer backbones, the viscosities of polymers were found to range between 0.87∼ 1.57 dL/B. All the polymers showed good thermal stability up to 320$\^{C}$ and the 10% weight loss temperature was observed in the range of 450∼540$\^{C}$ in a thermogravimetric traces. The glass transition was recorded in the temperature range of 200 ∼ 270$\^{C}$. All the polymers showed an amorphous nature on a differential scanning calorimetric thermograms. These polymers generally had good mechanical properties and readily soluble in various polar solvents. Further, it was proved that their properties could be determined from the composition.

  • PDF

Three-dimensional MXene (Ti3C2Tx) Film for Radionuclide Removal From Aqueous Solution

  • Jang, Jiseon;Lee, Dae Sung
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2018년도 추계학술논문요약집
    • /
    • pp.379-379
    • /
    • 2018
  • MXenes are a new family of 2D transition metal carbide nanosheets analogous to graphene (Lv et al., 2017; Sun et al., 2018). Due to the easy availability, hydrophilic behavior, and tunable chemistry of MXenes, their use in applications for environmental pollution remediation such as heavy metal adsorption has recently been explored (Li et al., 2017). In this study, three-dimensional (3D) MXene ($Ti_3C_2T_x$) films with high adsorption capacity, good mechanical strength, and high selectivity for specific radionuclide from aquose solution were successfully fabricated by a polymeric precursor method using vacuum-assisted filtration. The highest removal efficiency on the films was 99.54%, 95.61%, and 82.79% for $Sr^{2+}$, $Co^{2+}$, and $Cs^+$, respectively, using a film dosage of 0.06 g/ L in the initial radionuclide solution (each radionuclide concentration = 1 mg/L and pH = 7.0). Especially, the adsorption process reached an equilibrium within 30 min. The expanded interlayer spacing of $Ti_3C_2T_x$ sheets in MXene films showed excellent radionuclide selectivity ($Cs^+$ and/or $Sr^{2+}/Co^{2+}$) (Simon, 2017). Besides, the MXene films was not only able to be easily retrieved from an aqueous solution by filtration after decontamination processes, but also to selectively separate desired target radionuclides in the solutions. Therefore, the newly developed MXene ($Ti_3C_2T_x$) films has a great potential for radionuclide removal from aqueous solution.

  • PDF

전선피복용 컴파운드의 제조에서 가소제의 종류와 첨가량에 따른 물성 변화 연구 (Study on Property Modification with Kind and Additive Amount of Plasticizer in the Manufacture of Compounds for Cable Sheath)

  • 리시앙수;이상봉;조을룡
    • 반도체디스플레이기술학회지
    • /
    • 제18권2호
    • /
    • pp.11-16
    • /
    • 2019
  • The four different polymer compounds were manufactured with the two kinds of plasticizers [(di-2-ethylhexyl sebacate(DOS), and di-2-butyl sebacate(DBS)] and two different additive amounts(18, 26 phr) of the same plasticizer for making cable sheath for ship. Ethylene-vinylacetate, ethylene-propylene-diene-copolymer as matrix polymers and ethylene-vinylacetate grafted maleic anhydride as coupling agent were selected for compounding with fire retardant, closslinking agent, filler, and other additives besides plasticizer. The compound including DOS showed the higher ${\Delta}T$ than that including DBS at the same additive amount in the rheology test. And with increasing plasticizer, the compounds resulted in lower tensile strength and higher elongation by lubricating effect of plasticizer. DOS yielded better aging resistance and cold resistance than DBS due to the good heat resistance and low solidifying point of DOS compared to DBS.

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Hybrids of Chitosan and Bamboo Charcoal/Silica

  • Li, Xiang Xu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • 제54권1호
    • /
    • pp.22-29
    • /
    • 2019
  • Chitosan-polyvinyl alcohol (PVA) -bamboo charcoal/silica (CS-PVA-BC/SI) hybrid fillers with compatibilized styrene-butadiene rubber (SBR) composites were fabricated by the interpenetrating polymer network (IPN) method. The structure and composition of the composite samples were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The viscoelastic behaviors of the rubber composites and their vulcanizates were explored using a rubber processing analyzer (RPA) in the rheometer, strain sweep and temperature sweep modes. The storage and loss moduli of SBR increased significantly with the incorporation of different hybrid fillers, which was attributed to the formation of an interphase between the hybrid fillers and rubber matrix, and the effective dispersion of the hybrid fillers. The mechanical properties (hardness, tensile strength, oxygen transmission rate, and swelling rate) of the composite samples were characterized in detail. From the results of the mechanical test, it was found that BC-CS-PVA0SBR had the best mechanical properties. Therefore, the BC-CS-PVA hybrid filler provided the best reinforcement effects for the SBR latex in this research.